Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(P\left(x\right)=5x^3+2x^4-x^2+3x^2-3x^3-x^4+1-4x^3\)
\(\Rightarrow P\left(x\right)=2x^4-x^4+5x^3-3x^3-4x^3-x^2+3x^2+1\)
\(\Rightarrow P\left(x\right)=x^4-2x^3+2x^2+1\)
Câu 1:
a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)
c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)
\(P\left(0\right)=0\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)
a: a(x)=x^3+3x^2+5x-18
b(x)=-x^3-3x^2+2x-2
b: m(x)=a(x)+b(x)
=x^3+3x^2+5x-18-x^3-3x^2+2x-2
=7x-20
c: m(x)=0
=>7x-20=0
=>x=20/7
a) Thu gọn và sắp xếp:
\(A\left(x\right)=\left(3x^6-3x^6\right)-x^4+\left(3x^3-3x^3+x^3\right)+5=-x^4+x^3+5\)
\(B\left(x\right)=2x^5+\left(x^4-x^4\right)-2x^3+x-1=2x^5-2x^3+x-1\)
b) \(A\left(x\right)+B\left(x\right)=-x^4+x^3+5+2x^5-2x^3+x-1=2x^5-x^4-x^3+x+4\)
\(A\left(x\right)-B\left(x\right)=-x^4+x^3+5-\left(2x^5-2x^3+x-1\right)=-2x^5-x^4+3x^3-x+6\)
a, \(A\left(x\right)=-x^4+x^3+5;B\left(x\right)=2x^5-2x^3+x-1\)
b, \(A\left(x\right)+B\left(x\right)=2x^5-x^4-x^3+x+4\)
\(A\left(x\right)-B\left(x\right)=-2x^5-x^4+3x^3-x+6\)
Thu gọn đa thức A(x)
A(x)=2x2 -2x +x3-7-3x
=2x2+(-2x-3x)+x3-7
=2x2-5x+x3-7
Sắp xếp A(x) theo lũy thừa giảm dần của biến là
A(x)= x3+2x2-5x-7
Thu gọn đa thức B(x)=-11+4x3+x2-5x-3x3-x2
=-11+(4x3-3x3)+(x2-x2)-5x
=-11+x3-5x
Sắp xếp B(x) theo lũy thừa giảm dần của biến là
B(x)= x3-5x-11
b) Ta có A(x)= x3+2x2-5x-7
=) A(-1)= (-1)3+2.12-5.1-7
= -1+2-5-7
= -13
Ta có B(x)= x3-5x-11
=) B(2)=23 - 5.2-11
= 8-10-11
= -13
Giúp bạn phần a,b nha
c) P(x) = A(x)+B(x)
= \(x^3+2x^2-5x-7\)+ \(x^3-5x-11\)= \(\left(x^3+x^3\right)\)+\(2x^2\)+\(\left(-5x-5x\right)\)+( -7 - 11)
=\(2x^3\)+\(2x^2\)\(-10x\)-18
vậy P(x)=\(2x^3+2x^2-10x-18\)
Q(x)=A(x)-B(x)
=\(\left(x^3+2x^2-5x-7\right)\)- \(\left(x^3-5x-11\right)\)= \(x^3+2x^2-5x-7\)-\(x^3+5x+11\)
=\(\left(x^3-x^3\right)\)+\(2x^2\)+\(\left(-5x+5x\right)\)+( -7 + 11)
=\(2x^2\)+4
d) \(2x^2+4\)
Ta thấy: \(2x^2\ge0\forall x\)
=> \(2x^2+4\)> 0 \(\forall x\)
=> \(2x^2+4\ne0\forall x\)
=> \(2x^2+4\)vô nghiệm hayQ(x)=A(x) - B(x) vô nghiệm
Vậy Q(x)=A(x)-B(x) vô nghiệm
A(x)=- x3 -2x2+5x+7
B(x)=- 3x4 + x3+10x2-7
P(x)=- 3x4+8x2+5x
Q(x)=3x4-2x3-12x2+5x+14
thay x=-1 vào P(x) =>P(x)=0 => x= -1 là nghiệm của đa thức
a) f(x) = 3 x^2-5X^3+3X^3+X^4+2x^3+2
=(-5x^3+3x^3+2x^3)+3x^2+2
=3x^2+2
( sắp xếp theo thứ tự rồi)
b) f(x)=3x^2+2=0
Vì 3x^2>0 với mọi x
2>0
=> 3x^2+2>0
Vậy F(x) vô nghiệm