K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2020

\(C\left(x\right)=x+x^3+...+x^{2013}\)

\(C\left(-1\right)=\left(-1\right)+\left(-1\right)^3+...+\left(-1\right)^{2013}\)

\(C\left(-1\right)=\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)

\(C\left(-1\right)=\left(-1\right)\cdot1007\)( căn cứ vào số các số mũ (: )

\(C\left(-1\right)=-1007\)

Bài nay cx giống hqua mk lm nhưng bài hqua +;- logic hơn nhiều :v

Cho e xin tí p/s : Sao lạ ra 1007 ạ ? >:

4 tháng 4 2017

\(P\left(x\right)=x^5-2013x^4+2013x^3-2013x^2+2013x-2014\)

\(=x^5-2012x^4-x^4+2012x^3+x^3-2012x^2-x^2+2012x+x-2014\)

\(=\left(x^5-x^4\right)+\left(-2012x^4+2012x^3\right)+\left(x^3-x^2\right)+\left(-2012x^2+2012x\right)+x-2014\)

\(=x^4\left(x-1\right)-2012x^3\left(x-1\right)+x^2\left(x-1\right)-2012x\left(x-1\right)+\left(x-1\right)-2013\)

\(=\left(x-1\right)\left(x^4-2012x^3+x^2-2012x+1\right)-2013\)

\(=\left(x-1\right)\left(x^3\left(x-2012\right)+x\left(x-2012\right)+1\right)-2013\)

Thay x=2012 ta có :

\(P\left(x\right)=\left(2012-1\right)\left(2012^3\left(20112-2012\right)+2012\left(2012-2012\right)+1\right)-2013\)

\(=2011\left(2012^3\cdot0+2012\cdot0+1\right)-2013\)

\(=2011\cdot\left(1\right)-2013\\ =-2\)

4 tháng 4 2017

\(P\left(x\right)=x^5-\left(2012+1\right)x^4+\left(2012+1\right)x^3-\left(2012+1\right)x^2+\left(2012+1\right)x-\left(2012+2\right)\)

\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-\left(x+2\right)\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-2\)

\(\Rightarrow P\left(x\right)=-2\)

8 tháng 6 2020

Ta có f(1999) = 19992015 - 2000.19992004 + 2000.19992013 - 2000.19992012 + .... + 2000.1999 - 1

                      = 19992015 - 2000(19992014 - 19992013 + 19992012 - .... - 2000.1999) - 1

         Đặt C = 19992014 - 19992013 + 19992012 - .... - 2000.1999

  Khi đó : f(1999) = 19992015 - 2000C - 1

Ta có : C = 19992014 - 19992013 + 19992012 - .... - 2000.1999

=> 1999C = 19992015 - 19992014 + 19992013 - .... - 2000.19992

Lấy 1999C cộng C theo vế ta có : 

1999C + C = (19992015 - 19992014 + 19992013 - .... - 2000.19992) + (19992014 - 19992013 + 19992012 - .... - 2000.1999)

      2000C = 19992015 - 2000.1999

=> f(1999) = 19992015 - 19992015 +  2000.1999 - 1 = 2000.1999 + 1

    

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) \(\begin{array}{l}P(x) =  - 9{x^6} + 4x + 3{x^5} + 5x + 9{x^6} - 1 = ( - 9{x^6} + 9{x^6}) + 3{x^5} + (4x + 5x) - 1\\ = 0 + 3{x^5} + 9x - 1 = 3{x^5} + 9x - 1\end{array}\).

b) Bậc của đa thức là 5.

c) Thay \(x =  - 1;x = 0;x = 1\) vào đa thức ta được:

\(\begin{array}{l}P( - 1) = 3.{( - 1)^5} + 9.( - 1) - 1 = 3.( - 1) - 9 - 1 =  - 3 - 9 - 1 =  - 13.\\P(0) = {3.0^5} + 9.0 - 1 = 3.0 - 1 = 0 - 1 =  - 1.\\P(1) = {3.1^5} + 9.1 - 1 = 3.1 + 9 - 1 = 3 + 9 - 1 = 11.\end{array}\) 

15 tháng 5 2015

\(f\left(1\right)=1+1+1^2+...+1^{2013}=1.2014=2014\)

\(f\left(-1\right)=1-1+1-1+1-1+...+1-1=0+0+0+...+0=0\)

đúng nha

=2013\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)....\left(\frac{1}{2013}-1\right)\)

=2013 \(\left[-\left(\frac{1}{2}.\frac{2}{3}....\frac{2012}{2013}\right)\right]\)

=2013\(\left(-\frac{1}{2013}\right)\)=-1