K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2021

a) A(x) = 21 - x4 + 4x - 2x4 - 3x2 - 16

= (21 - 16) + (-x4 - 2x4) + 4x - 3x2

= 5 - 3x4 + 4x - 3x2

Sắp xếp: A(x) = -3x4 - 3x2 + 4x + 5

B(x) = 2 + x4 + 4x2 + 2x4 + 7x - 6x4 - 3x

= 2 + (x4 + 2x4 - 6x4) + 4x2 + (7x - 3x)

= 2 - 3x4 + 4x2 + 4x

Sắp xếp: B(x) = -3x4 + 4x2 + 4x + 2

b) A(x) - B(x) = (-3x4 - 3x2 + 4x + 5) - (-3x4 + 4x2 + 4x + 2)

= -3x4 - 3x2 + 4x + 5 + 3x4 - 4x2 - 4x - 2

= (-3x4 + 3x4) + (-3x2 - 4x2) + (4x - 4x) + (5 - 2)

= -7x2 + 3

Bậc: 2. Hệ số cao nhất: -7. Hệ số tự do: 3

20 tháng 5 2021

a.\(A\left(x\right)=21-x^4+4x-2x^4-3x^2-16\)

\(=-3x^4-3x^2+4x+5\)

\(Sx:A\left(x\right)=-3x^4-3x^2+4x+5\)

\(B\left(x\right)=2+x^4+4x^2+2x^4+7x-6x^4-3x\)

\(=2-3x^4+4x^2+4x\)

\(Sx:B\left(x\right)=-3x^4+4x^2+4x+2\)

b,\(A\left(x\right)-B\left(x\right)=-3x^4-3x^2+4x+5+3x^4-4x^2-4x-2\)

\(=-7x^2+3\)

Bậc của đa thức là bậc 2

Hệ số tự do là 3

22 tháng 8 2023

a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)

\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)

\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)

\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)

\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)

\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)

\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)

\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)

18 tháng 3 2022

Thu gọn và sắp xếp các hạng tử của đa thức theo lũy thừa giảm dần của biến:                        P(x)=x3+2x2+2

P(1)=13+2.12+2=1+2+2=5

P(-1)=(-1)3+2.(-1)2+2=(-1)+2+2=3

9 tháng 5 2022

P(x) = \(-x^4-5x^3-6x^2+5x-1\)

Q(x) = \(x^4+5x^3+6x^2-2x+3\)

M(x) = P(x) + Q(x)

    \(-x^4-5x^3-6x^2+5x-1\)

+

       \(x^4+5x^3+6x^2-2x+3\)

     ------------------------------------

                                    \(3x+2\)

Vậy : M(x) = 3x + 2

Nghiệm của M(x) : 3x + 2 = 0

                               3x       = -2

                                 x       = \(-\dfrac{2}{3}\) 

a) \(P\left(x\right)=x^4-5x^3-1-6x^2+5x-2x^4\)

     \(P\left(x\right)=\left(x^4-2x^4\right)-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-6x^2+5x-1\)

 

     \(Q\left(x\right)=3x^4+6x^2+5x^3+3-2x^4-2x\)

     \(Q\left(x\right)=\left(3x^4-2x^4\right)+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+5x^3+6x^2-2x+3\)

b) Ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

        \(\begin{matrix}\Rightarrow P\left(x\right)=-x^4-5x^3-6x^2+5x-1\\Q\left(x\right)=x^4+5x^3+6x^2-2x+3\\\overline{P\left(x\right)+Q\left(x\right)=0+0+0+3x+2}\end{matrix}\)

Vậy \(M\left(x\right)=3x+2\)

Cho \(M\left(x\right)=0\)

hay \(3x+2=0\)

       \(3x\)       \(=0-2\)

       \(3x\)        \(=-2\)

          \(x\)        \(=-2:3\)

          \(x\)         \(=\dfrac{-2}{3}\)

Vậy \(x=\dfrac{-2}{3}\) là nghiệm của đa thức \(M\left(x\right)\)

 

a) Ta có: \(M\left(x\right)=3x^3+x^2+4x^4-x-3x^3+5x^4+2x^2-6\)

\(=\left(4x^4+5x^4\right)+\left(3x^3-3x^3\right)+\left(x^2+2x^2\right)-x-6\)

\(=9x^4+3x^2-x-6\)

Ta có: \(N\left(x\right)=-2x^2-x^4+4x^3-x^2-5x^3+3x+5+x\)

\(=-x^4+\left(4x^3-5x^3\right)+\left(-2x^2-x^2\right)+\left(3x+x\right)+5\)

\(=-x^4-x^3-3x^2+4x+5\)

c) Ta có: M(x)+N(x)

\(=9x^4+3x^2-x-6-x^4-x^3-3x^2+4x+5\)

\(=8x^4-x^3+3x-1\)

a: P(x)=4x^5-4x^5-2x^3+x^4-3x^2+4x^2+3x-5x+1

=x^4-2x^3+x^2-2x+1

Q(x)=x^7-x^7-2x^6+2x^6+2x^3-2x^4+2x^4+x^5-x^5-x+5

=2x^3-x+5

b: P(x)+Q(x)

=x^4-2x^3+x^2-2x+1+2x^3-x+5

=x^4+x^2-3x+6

P(x)-Q(x)

=x^4-2x^3+x^2-2x+1-2x^3+x-5

=x^4-4x^3+x^2-x-4

21 tháng 3 2023

`a,A(x) =2x^3 -x^4 +2x-4+3x^2 -2x^3+x^4`

`= ( 2x^3-2x^3) +(-x^4+x^4) + 2x -4+3x^2`

`= 0+0+ 2x -4+3x^2`

`= 3x^2 +2x-4`

`b, M(x)=A(x)+B(x)`

`M(x)= 3x^2 +2x-4 + x-2`

`= 3x^2 + 3x-6`

`b,  N(x) = A(x) - B(x)`

`N(x)=  3x^2 +2x-4 -(x-2)`

`= 3x^2 +2x-4 -x+2`

`= 3x^2 + x -2`

`c,` Ta có :

`x-2=0`

`=> x=0+2`

`=>x=2`

 

10 tháng 4 2020

dsssws

\(a) f ( x ) = 2 x ^4 + 3 x ^2 − x + 1 − x ^2 − x ^4 − 6 x ^3\)

\(= ( 2 x ^4 − x ^4 ) − 6 x ^3 + ( 3 x ^2 − x ^2 ) − x + 1\)

\(= x ^4 − 6 x ^3 + 2 x ^2 − x + 1\)

\(g ( x ) = 10 x ^3 + 3 − x ^4 − 4 x ^3 + 4 x − 2 x ^2\)

\(= − x ^4 + ( 10 x ^3 − 4 x ^3 ) − 2 x ^2 + 4 x + 3\)

\(= − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)

\(b) f ( x ) + g ( x ) = x ^4 − 6 x ^3 + 2 x ^2 − x + 1 − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)

\(= ( x ^4 − x ^4 ) + ( − 6 x ^3 + 6 x ^3 ) + ( 2 x ^2 − 2 x ^2 ) + ( − x + 4 x ) + ( 1 + 3 )\)

\(= 3 x + 4\)

c)Có \(h ( x ) = f ( x ) + g ( x ) = 3 x + 4\)

\(Cho h ( x ) = 0 ⇒ 3 x + 4 = 0\)

\(⇒ 3 x = − 4\) 

\(⇒ x = − \frac{4 }{3} \)

Vậy  \(x=-\frac{4}{3}\) là nghiệm của \(h ( x ) \)

 

1: \(A=5x^5-5x^3+7x^2-2x+4\)

\(B\left(x\right)=-5x^6+2x^4+4x^3+4x^2-4x-1\)

2: \(A\left(x\right)+B\left(x\right)=5x^5-5x^3+7x^2-2x+4-5x^6+2x^4+4x^3+4x^2-4x-1\)

\(=-5x^6+5x^5+2x^4-x^3+11x^2-6x+3\)

\(A\left(x\right)-B\left(x\right)\)

\(=5x^5-5x^3+7x^2-2x+4+5x^6-2x^4-4x^3-4x^2+4x+1\)

\(=5x^6+5x^5-2x^4-9x^3+3x^2+2x+5\)