Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết đa thức P(x) = 5x3 – 4x2 + 7x - 2 dưới dạng:
a) Tổng của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 – 4x2) + (7x - 2)
b) Hiệu của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 + 7x) - (4x2 + 2)
Chú ý: Đáp số ở câu a; b không duy nhất, các bạn có thể tìm thêm đa thúc khác.
Bạn Vinh nói đúng: Ta có thể viết đa thức đã cho thành tổng của hai đa thúc bậc 4 chẳng hạn như:
5x3 – 4x2 + 7x - 2 = (2x4 + 5x3 + 7x) + (– 2x4 – 4x2 - 2).
a) Ta có thể viết đa thức 5x3−4x2+7x−2 thành tổng của hai đa thức như sau:
5x3−4x2+7x−2 = 5x3+(−4x2+7x−2)
b)Hiệu của hai đa thức:
5x3−4x2+7x−2=5x3−(4x2−7x+2)
*Bạn Vinh nêu nhận xét : " Ta có thể viết đa thức đã cho thành tổng của hai đa thức bậc 4" là đứng.
Vì,chẳng hạn:
5x3−4x2+7x−2=(x4+4x3−3x2+7x−2)+(−x4+x3−x2)
a) P(x)= ( 3x3-2x2) + ( 2x3-2x2+7x-2)
b)P(x)= (5x3+6x2+7x+3)-(10x2+5)
Tổng các hệ số của các hạng tử của đa thức là:
f(x)= 11994.(-1)1995=-1
f(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)
g(x)=\(x^5-7x^4+4x^3-3x-9\)
f(x)+g(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)+\(x^5-7x^4+4x^3-3x-9\)
=(9-9)-(\(x^5-x^5\))\(-\left(7x^4+7x^4\right)-\left(2x^3-4x^3\right)+x^2\)+(\(\)\(4x-3x\))
=\(-14x^4+2x^3+x^2+x\)
a) Sắp xếp các đa thức theo lũy thừa giảm của biến :
\(f\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)
\(g\left(x\right)=x^5-7x^4+2x^3+2x^3-3x-9\)
b, \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(=\left(-x^5-7x^4-2x^3+x^2+4x+9\right)+\left(x^5-7x^4+2x^3+2x^3-3x-9\right)\)
=> h(x) = -14x4 + 2x3 + x2 +x
\(P\left(x\right)=5x^2+3x-4-2x^3+4x^2-6\)
\(P\left(x\right)=\left(5x^2+4x^2\right)+3x+\left(-4-6\right)-2x^3\)
\(P\left(x\right)=9x^2+3x-10-2x^3\)
\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)
\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)
Sắp giảm :
\(P\left(x\right)=-2x^3+9x^2+3x-10\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
\(A\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(A\left(x\right)\)= \(\left[\left(-2x^3+9x^2+3x-10\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\right]\)
\(A\left(x\right)=\)\(-2x^3+9x^2+3x-10+x^5-2x^4+2x^3-3x^2+x-\frac{1}{4}\)
\(A\left(x\right)=\)\(\left(-2x^3+2x^3\right)+\left(9x^2-3x^2\right)+\left(3x-x\right)+\left(-10-\frac{1}{4}\right)+x^5-2x^4\)
\(A\left(x\right)=6x^2+2x-2,75+x^5-2x^4\)
P(x) = 4x3 + 3x2 - 2x + 5
= (2x3 + x2 - 3x + 1) + (2x3 + 2x2 + x + 4)