Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
\(S=12(x^3+y^3)+16x^2y^2+34xy\)
\(=12[(x+y)^3-3xy(x+y)]+16x^2y^2+34xy\)
\(=12(1-3xy)+16x^2y^2+34xy=12+16x^2y^2-2xy\)
\(=(4xy-\frac{1}{4})^2+\frac{191}{16}\geq \frac{191}{16}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} x+y=1\\ xy=\frac{1}{16}\end{matrix}\right.\Leftrightarrow (x,y)=(\frac{2+\sqrt{3}}{4}, \frac{2-\sqrt{3}}{4})\)
Vậy \(S_{\min}=\frac{191}{16}\) khi \(\Leftrightarrow (x,y)=(\frac{2+\sqrt{3}}{4}, \frac{2-\sqrt{3}}{4})\) và có hoán vị.
b)
\(A=5(x^3+y^3)+12xy+4x^2y^2\)
\(=5[(x+y)^3-3xy(x+y)]+12xy+4x^2y^2\)
\(=5(1-3xy)+12xy+4x^2y^2\)
\(=5+4x^2y^2-3xy\)
Áp dụng BĐT Cô-si: $1=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}$
$A=4x^2y^2-3xy+5=xy(4xy-1)-\frac{1}{2}(4xy-1)+4,5=(xy-\frac{1}{2})(4xy-1)+4,5$
Vì $xy\leq \frac{1}{4}\Rightarrow 4xy-1\leq 0; xy-\frac{1}{2}< 0\Rightarrow (xy-\frac{1}{2})(4xy-1)\geq 0$
$\Rightarrow A=(xy-\frac{1}{2})(4xy-1)+4,5\geq 4,5$
Vậy $A_{\min}=4,5$ khi $x=y=\frac{1}{2}$
1.
a. x2 - 2x + 1 = 0
x2 - 2x*1 + 12 = 0
(x-1)2 = 0
............( tới đây tui bí rùi tự suy nghĩ rùi lm tiếp ik)
1, Tìm x biết:
a, x2 - 2x +1 = 0
(x-1)2 = 0
x-1 = 0
x = 1. Vậy ...
b, ( 5x + 1)2 - (5x - 3) ( 5x + 3) = 30
25x2 +10x + 1 - (25x2 -9) = 30
25x2 +10x + 1 - 25x2 +9 = 30
10x + 10 =30
10(x+1) = 30
x+1 =3
x = 2. vậy ...
c, ( x - 1) ( x2 + x + 1) - x ( x +2 ) ( x - 2) = 5
(x3 - 1) - x(x2 -4) = 5
x3 - 1 - x3 + 4x = 5
4x - 1 = 5
4x = 6
x = \(\dfrac{3}{2}\) .vậy ...
d, ( x - 2)3 - ( x - 3) ( x2 + 3x + 9 ) + 6 ( x + 1)2 = 15
x3 - 6x2 + 12x - 8 - (x3 - 27) + 6 (x2 + 2x +1) =15
x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x +6 =15
24x + 25 = 15
24x = -10
x = \(\dfrac{-5}{12}\) vậy ...
a) 2x2 + 4x + xy + 2y
= (2x2 + xy) + (4x + 2y)
= x(2x + y) + 2(2x + y)
= (x + 2)(2x + y)
b) x2 + xy - 7x - 7y
= x(x + y) - 7(x + y)
= (x - y)(x + y)
a) x3 - 5x2 + 8x - 4
= x3 - x2 - 4x2 + 4x + 4x - 4
= x2( x - 1) - 4x( x - 1) + 4( x - 1)
= ( x - 1)( x- 2)2
_______________Bài làm___________________
a, \(x^2+xy+y^2+1\)
\(=\left(x^2+2x\dfrac{y}{2}+\dfrac{y^2}{4}\right)+\dfrac{3y^2}{4}+1=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^3}{4}+1\)
Do \(\left(x+\dfrac{y}{2}\right)^2\ge0\forall x,y\)
Và \(\dfrac{3y^2}{4}\ge0\forall y\)
Nên: \(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0\forall x,y=>đpcm\)
b, \(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+\left(y^2-6y+9\right)+5\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+\left(y-3\right)^2+5\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)
Do \(\left(x-2y+1\right)^2\ge0\forall x,y\)
Và \(\left(y-3\right)^2\ge0\forall y\)
Nên \(\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)
c, \(5x^2+10y^2-6xy-4x-2y+3\)
\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-2x+1\right)+\left(y^2-2y+1\right)+1\)
\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\)
Do .........
tự làm ik
Bài 3:
\(a,x^2-81=0\)
\(\Rightarrow x^2-9^2=0\)
\(\Rightarrow\left(x-9\right)\left(x+9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-9=0\\x+9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
\(b,x^2-x-6=0\)
\(\Rightarrow x^2-3x+2x-6=0\)
\(\Rightarrow\left(x^2+2x\right)-\left(3x+6\right)=0\)
\(\Rightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
bài 1: rút gọn biểu thức:
B = (x−2y)2- (x+2y)2+ (4y + 1) ( 1 - 4y)
= x2 - 4xy+ 4y2 - x2 +4xy+4y2+4y- 16y2 +1-4y
=2x2- 8y2+1
E = (2x−3)2 - (3x+1)2 - 5 (x-2) (x+2)
=4x2- 12x+ 9- 9x2+ 6x+ 1- 5x2+20
= - 10x2- 6x+ 30
1/ a/ 5x2 - 20
= 5.(x2 - 4)
=5.(x2 - 22)
=5.(x+2).(x-2)
b/ xy2 - y3 - x + y
= (xy2 - x) - (y3 - y)
= x(y2 - 1) - y(y2 - 1)
= (y2 - 1).(x-y)
= (y-1).(y+1).(x-y)
c/ x2 + 3x - 10
= x2 + 5x - 2x - 10
= x(x+5) - 2(x+5)
= (x+5).(x-2)
d/ x2 - y2 + 12y - 36
= x2 - (y2 - 2.y.6 + 62)
= x2 - (y-6)2
= (x+y-6).(x-y+6).
2/ a/ 4x2 - 9 - x(2x-3) = 0
(2x)2 - 32 - x(2x-3) = 0
(2x+3).(2x-3)-x(2x-3) = 0
(2x-3).(2x+3-x) = 0
(2x-3).(x+3) = 0
=> 2x - 3 = 0 hoặc x + 3 = 0
hay x = 3/2 hoặc x = -3
b/ x3 -25x = 0
x(x2 - 25) = 0
x(x+5)(x-5) = 0
=> x = 0 hoặc x+5=0 hoặc x-5 = 0
hay x = 0; x = -5; x = 5
c/ 2(x+5) - x2 - 5x = 0
2(x+5) - x(x+5) = 0
(x+5).(2-x) = 0
=> x + 5 = 0 hoặc 2 - x = 0
hay x = -5 hoặc x = 2
d/ 2x2 + 5x - 3 = 0
2x2 - x + 6x - 3 = 0
x(2x-1) + 3(2x-1) = 0
(2x-1).(x+3) = 0
=> 2x-1=0 hoặc x+3=0
hay x = 1/2 hoặc x = -3
Đùa game, đánh xong rồi ấn nhầm nút hủy :) ok im fine
Bài 1: Câu hỏi của nguyễn hà - Toán lớp 8 | Học trực tuyến
Bài 2:
a) \(B=\frac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}\)
\(B=\frac{3y\left(y^2-2y+1\right)-\left(y^2-2y+1\right)}{2y\left(y^2-2y+1\right)+3\left(y^2-2y+1\right)}\)
\(B=\frac{\left(y-1\right)^2\left(3y-1\right)}{\left(y-1\right)^2\left(2y+3\right)}=\frac{3y-1}{2y+3}\)
b) \(\frac{2D}{2y+3}=\frac{2\left(3y-1\right)}{\left(2y+3\right)^2}\Leftrightarrow6y-2⋮\left(2y+3\right)^2\)
Dễ thấy tử số là số chẵn, mẫu số là số lẻ nên \(\frac{2D}{2y+3}\)không là số nguyên
Mặt khác vì mọi số nguyên đều chia hết cho 1 và -1
\(\Rightarrow\left[{}\begin{matrix}2y+3=1\\2y+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\)
c) \(B>1\Leftrightarrow\frac{3y-1}{2y+3}>1\)
\(\Leftrightarrow3y-1>2y+3\)
\(\Leftrightarrow y>4\)
Vậy....
làm sai rồi 5x\(^2\)-x\(^2\)=4x\(^2\) mà ?? HT. Phong (9A5)