K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2023

 Thật may câu này tương tự câu cuối trong đề thi HSG 9 tỉnh mình năm 2021-2022 nên biết làm :)) (bài lúc đó y chang thế này chỉ khác là số 2021 với 2022)

 Trước tiên ta sẽ chứng minh \(P\left(P\left(x\right)+x\right)=P\left(x\right)P\left(x+1\right)\). Thật vậy, ta có:

 \(VP=P\left(x\right)P\left(x+1\right)\) 

\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)

\(=\left(x^2+mx+n\right)\left(x^2+2x+1+mx+m+n\right)\)

\(=\left(x^2+mx+n\right)\left[\left(x^2+mx+n\right)+2x+m+1\right]\)

\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+x^2+mx+n\)

\(=\left[\left(x^2+mx+n\right)+x\right]^2+m\left(x^2+mx+n+x\right)+n\)

\(=\left[P\left(x\right)+x\right]^2+m\left[P\left(x\right)+x\right]+n\)

\(=P\left(P\left(x\right)+x\right)=VT\) 

Vậy đẳng thức được chứng minh. 

Từ \(P\left(P\left(x\right)+x\right)=P\left(x\right)P\left(x+1\right)\), chọn \(x=2023\), ta được:

\(P\left(P\left(2023\right)+2023\right)=P\left(2023\right)P\left(2024\right)\)

\(\Rightarrow Q\left(x\right)\) có nghiệm nguyên là \(x=P\left(2023\right)+2023\) (đpcm)

 

1. Tổng các hệ số của đa thức là: 12004.22005=22005

2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.

Nhận thấy x = 1 không là nghiệm của phương trình .

Nhân cả hai vế của pt cho (x−1)≠0 được : 

(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)

Vậy pt trên vô nghiệm.

25 tháng 2 2018

1. Tổng các hệ số của đa thức là: 

12014 . 22015 = 22015

2 . Cần chứng minh. 

\(x4 + x3 + x2 + x + 1 = 0\)

Vô nghiệm. 

Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình. 

Nhân cả hai vế của phương trình cho:

\(( x - 1 ) \) \(\ne\) \(0\) được :

\(( x-1). (x4+x3+x2+x+1)=0\)

\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)

Vô lí. 

Vậy phương trình trên vô nghiệm. 

12 tháng 8 2015

Đăng mấy bài này trên đây khó nhận được đáp án lắm! Nên đăng trên một số diễn đàn nhiều pro như:

Diễn đàn Toán học

Diễn Đàn MathScope

.......

Bài 1.

+TH1: Đa thức có bậc là 0

\(f\left(x\right)=a\text{ }\left(a\in R\right)\forall x\in R\)

Theo đề ra: \(16a^2=a^2\Rightarrow a=0\)

Vậy \(f\left(x\right)=0\forall x\in R\)

+TH2: Đa thức có bậc lớn hơn hoặc bằng 1.

Giả sử đa thức có bậc n.

Gọi hệ số cao nhất của đa thức là \(a_n\text{ }\left(a_n\ne0\right)\)

Từ giả thiết, suy ra: \(16a_n^2=\left(2a_n\right)^2\Leftrightarrow16a_n^2=4a_n^2\Leftrightarrow a_n=0\text{ (vô lí)}\)

Vậy điều giả sử sai, hay không có đa thức nào thỏa mãn.

Vậy chỉ có \(f\left(x\right)=0\forall x\in R\) thỏa mãn để bài.

2 tháng 9 2015

Từ hằng đẳng thức \(x^n-1=\left(x-1\right)\left(x^{n-1}+x^{n-2}+\cdots+1\right)\to x^n-1\vdots x-1\).

Ta có   \(x^{3n+1}+x^{2n}+1=x\left(x^{3n}-1\right)+\left(x^2+x+1\right)+\left(x^{2n}-x^2\right)\) . Từ trên ta suy ra \(x^{3n}-1\) chia hết cho đa thức \(x^3-1,\) do đó  \(x^{3n}-1\) chia hết cho đa thức \(x^2+x+1.\) Vậy \(x^{3n+1}+x^{2n}+1\) chia hết cho đa thức \(x^2+x+1\)  khi và chỉ khi \(x^{2n}-x^2\) chia hết cho đa thức \(x^2+x+1.\)

Ta có \(x^{2n}-x^2=x^2\left(x^{2n-2}-1\right)\). Ta viết   \(2n-2=3k+r,0\le r\le2.\)

Khi đó \(x^{2n-2}-1=x^{3k+r}-1=x^r\left(x^{3k}-1\right)+\left(x^r-1\right)\), thành thử \(x^r-1\vdots x^2+x+1\to r=0.\) 

Vậy \(2n-2\vdots3\to n-1\vdots3\), hay  \(n=3k+1,\)  với \(k\) là số tự nhiên.

Đáp số: \(n=3k+1,\)  với \(k\) là số tự nhiên tùy ý.

23 tháng 10 2016

Giả sử f(x) có nghiệm nguyên là a, Khi đó f(x)=(x−a)Q(x)
Thay x =1;2 vào biểu thức trên ta được : f(1)=(1−a)Q(1) và f(2)=(2−a)Q(2)

=> f(1).f(2)=(a−1)(a−2)Q(1).Q(2)

Hay 2013=(a−1)(a−2).Q(1)Q(2)

Ta có VT không chia hết cho 2, VP chia hết cho 2 ( vì (a−1)(a−2) chia hết cho 2 )

=> PT vô nghiệm

=> f(x) không có nghiệm nguyên 

6 tháng 4 2020

Gọi 3 nghiệm của P(x) lần lượt là x1,x2,x3

\(\Rightarrow P\left(x\right)=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\)

Vì P(Q(x)) =0 vô nghiệm nên

\(\left(x^2+2016x+2017-x_1\right)\left(x^2+2016x+2017-x_2\right)\left(x^2+2016x+2017-x_3\right)\) (1) vô nghiệm

Để (1) vô nghiệm thì \(\left(x^2+2016x+2017-x_1\right),\left(x^2+2016x+2017-x_2\right),\left(x^2+2016x+2017-x_3\right)\) vô nghiệm

\(\Rightarrow\Delta< 0\Leftrightarrow2016^2< 4\left(2017-x_i\right)\Rightarrow\left(2017-x_i\right)\ge1008^2\) với i=1,2,3

\(\Rightarrow P\left(2017\right)>1008^6\)