\(3x^4+x^2-3x^4+5\)

a) thu gọn và sắp xếp các hạng tử của P(x)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2021

a, \(P(x)=3x^4+x^2-3x^4+5\\ = (3x^4-3x^4)+x^2+5\\ = x^2+5\)

b, \(P(0)=0^2+5=5\\ P(-3)=(-3)^2+5=-9+5=-4\)

22 tháng 5 2021

c, Ta có: x2 ≥ 0 với mọi x

Nên x2 + 5 > 5

Hay P(x) > 5

Vậy P(x) không có nghiệm

18 tháng 4 2019

có sai đề không đấy, x=-5 P(x)=0 mà

18 tháng 4 2019

Hình như bạn sai đề

19 tháng 4 2017

a) Thu gọn và sắp xếp:

M(x) = 2x4 – x4 + 5x3 – x3 – 4x3 + 3x2 – x2 + 1

= x4 + 2x2 +1

b)M(1) = 14 + 2.12 + 1 = 4

M(–1) = (–1)4 + 2(–1)2 + 1 = 4

Ta có M(x)=\(x^4+2x^2+1\)

\(x^4\)\(2x^2\)luôn lớn hơn hoặc bằng 0 với mọi x

Nên \(x^4+2x^2+1>0\)

Tức là M(x)\(\ne0\) với mọi x

Vậy đa thức trên không có nghiệm.

19 tháng 4 2017

a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến

M(x)=2x4x4+5x3x34x3+3x2x2+1M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1

=x4+2x2+1=x4+2x2+1

b) M(1)=14+2.12+1=4M(1)=14+2.12+1=4

M(1)=(1)4+2.(1)2+1=4M(−1)=(−1)4+2.(−1)2+1=4

c) Ta có: M(x)=x4+2x2+1M(x)=x4+2x2+1

Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.

`@` `\text {Ans}`

`\downarrow`

`a)`

`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)

`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`

`= 2x^4 + 2x^3 - 5x + 3`

`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)

`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`

`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`b)`

`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`

`= 2*1 + 2*(-1) + 5 + 3`

`= 2 - 2 + 5 + 3`

`= 8`

___

`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`

`= 4*0 + 4*0 + 2*0 + 5*0 - 2`

`= -2`

`c)`

`G(x) = P(x) + Q(x)`

`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`

`= 6x^4 + 6x^3 + 2x^2 + 1`

`d)`

`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`

Vì `x^4 \ge 0 AA x`

    `x^2 \ge 0 AA x`

`=> 6x^4 + 2x^2 \ge 0 AA x`

`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`

`=> G(x)` luôn dương `AA` `x`

Bài cuối mình không chắc c ạ ;-;

2 tháng 5 2016

\(P\left(x\right)=3x^2-5x^2+2x-x^2+4-x^4-\frac{1}{2}+x-2x\)

            =\(\left(3x^2-5x^2-x^2\right)-x^4+\left(2x+x-2x\right)+\left(4-\frac{1}{2}\right)\)

            =\(-3x^2-x^4+x+\frac{7}{2}\)

giảm ->  =\(-x^4-3x^2+x+\frac{7}{2}\)

b)\(P\left(1\right)=-1^4-3.1^2+1+\frac{7}{2}\)

               =\(-1-3.1+1+\frac{7}{2}\)

               =\(-1-3+1+\frac{7}{2}\)

               =\(\frac{1}{2}\)

\(P\left(\frac{1}{2}\right)=-\frac{1}{2}^4-3.\frac{1}{2}^2+\frac{1}{2}+\frac{7}{2}\)

              =\(-\frac{1}{16}-3.-\frac{1}{4}+\frac{1}{2}+\frac{7}{2}\)

              =\(-\frac{1}{16}-\left(-\frac{3}{4}\right)+\frac{1}{2}+\frac{7}{2}\)

             =\(\frac{75}{16}\)