Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\begin{Bmatrix} x^{4}+ax^{2}+1=0 & \\x^{3}+ax+1=0 & \end{Bmatrix}\)
Giả sử phương trình có nghiệm chung là \(x_o\)
\(\begin{Bmatrix} x_0^{4}+ax_0^{2}+1=0(1) & \\x_0^{3}+ax_0 +1=0(2) & \end{Bmatrix}\)
Suy ra
\(x_0^{4}-x_0^{3}+ax_0^{2}-ax_0=0\Leftrightarrow x_0(x_0-1)(x_0^{2}+a)=0\Leftrightarrow \begin{bmatrix} x_0=0 & & \\x_0=1 & & \\x_0^2+a=0 & & \end{bmatrix}\)Thử lại thấy a=-2 phương trình sẽ có 1 nghiệm chung x=1
Giả sử nghiệm chung của hai đa thức là \(x_0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0^4+ax_0^2+1=0\\x_0^3+ax_0+1=0\end{matrix}\right.\) \(\Rightarrow x_0^4+ax_0^2+1=x_0^3+ax_0+1\)
\(\Rightarrow x_0^4-x_0^3+ax^2_0-ax_0=0\Leftrightarrow x_0^3\left(x_0-1\right)+ax_0\left(x_0-1\right)=0\)
\(\Leftrightarrow x_0\left(x_0-1\right)\left(x_0^2+a\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=1\\x^2_0=-a\end{matrix}\right.\)
- Thay \(x_0=0\) vào ta được \(P\left(0\right)=1\Rightarrow\) ko phải nghiệm (loại)
- Thay \(x_0=1\) vào \(\left\{{}\begin{matrix}P\left(1\right)=a+2=0\Rightarrow a=-2\\Q\left(1\right)=a+2=0\Rightarrow a=-2\end{matrix}\right.\) (nhận)
- Với \(x_0^2=-a\Rightarrow a=-x^2_0\) thay vào ta được:
\(\left\{{}\begin{matrix}P\left(x_0\right)=x_0^4+\left(-x_0^2\right)x_0^2+1=1\ne0\\Q\left(x_0\right)=x_0^3+\left(-x_0^2\right)x_0+1=1\ne0\end{matrix}\right.\) (loại)
Vậy với \(a=-2\) thì 2 đa thức có nghiệm chung \(x=1\)
Câu 2 : \(f\left(x\right)=x^3-ax^2+bx-a\)
Áp dụng định lý Bezout ta có:
\(f\left(x\right)⋮\left(x-1\right)\)\(\Rightarrow f\left(1\right)=0\)
\(\Rightarrow1^3-a.1^2+b.1-a=1-a+b-a=0\)
\(\Leftrightarrow1-2a+b=0\)\(\Leftrightarrow2a-b=1\)(1)
\(\Rightarrow3\left(2a-b\right)=3\)\(\Rightarrow6a-3b=3\)(2)
\(f\left(x\right)⋮\left(x-3\right)\)\(\Rightarrow f\left(3\right)=0\)
\(\Rightarrow3^3-a.3^2+3b-a=27-9a+3b-a=0\)
\(\Leftrightarrow27-10a+3b=0\)\(\Leftrightarrow10a-3b=27\)(3)
Từ (2) và (3)
\(\Rightarrow\left(10a-3b\right)-\left(6a-3b\right)=27-3\)
\(\Leftrightarrow10a-3b-6a+3b=24\)
\(\Leftrightarrow4a=24\)\(\Leftrightarrow a=6\)
Thay \(a=6\)vào (1) ta có:
\(2.6-b=1\)\(\Leftrightarrow12-b=1\)\(\Leftrightarrow b=11\)
Vậy \(a=6\)và \(b=11\)
Lời giải:
Thực hiện phép chia đa thức, ta có:
\(P\left(x\right)=Q\left(x\right)\cdot T\left(x\right)\cdot D\left(x\right)\)
Trong đó:
\(T\left(x\right)=6x^2-\left(7+6b\right)x+7b+6b^2\)
\(D\left(x\right)=\left(a-6b^3-7b^2-12b-14\right)x+12b^2+14b+2\)
\(P\left(x\right)\) chia hết cho \(Q\left(x\right)\) khi \(D\left(x\right)=0\forall x\)
Vậy, ta có hệ phương trình:
\(\left\{\begin{matrix}a-6b^3-7b^2-12b-14=0\\12b^2+14b+2=0\end{matrix}\right.\)
Giải hệ phương trình, ta có:
\(\left\{\begin{matrix}a=3\\b=-1\end{matrix}\right.\) hay \(\left\{\begin{matrix}a=\frac{73}{6}\\b=-\frac{1}{6}\end{matrix}\right.\)
Nếu \(a=3\) thì phương trình \(P\left(x\right)=\left(6x^2-x-1\right)\left(x^2-x-2\right)=0\) có 4 nghiệm là: \(-1,2,\frac{1}{2},-\frac{1}{3}\)
Nếu \(a=\frac{73}{6}\) thì phương trình \(P\left(x\right)=\left(6x^2-6x-1\right)\left(x^2-\frac{1}{6}x-2\right)=0\) có 4 nghiệm là \(\frac{3\pm\sqrt{15}}{6},\frac{3}{2},-\frac{4}{3}.\)
a)Tac6P(x):Q(x).(6x2 ' (7 +6b)x+ 7b+6b21+ (a- 6b3 -7bz -lzb-14)x + 12bz + 14b+2 ocr1xl i Q(x) <+(a-6b3- l*-na-14)x +labz + 14b *2:0v6i Vx [a - 6b3 -7b2 -tzb-14 = o(i) el- [tzu'+14b+z=0(2) GiAi phucrng trinh (2) tadugc hai nghiQm b : - 1 'rra b = -l . 6 l^-73 Thay b:- 1 vd b=-+vio (1) a,rq. I ?=t,ho+c ]*- 6 6 lb=-l l.__1 L"--o (^ -c lu=T K6t qu6: ll -' . ; ] lb=-l'l, 1 ' lD=-; Lb Download tại: maytinhbotui.vn b) + Vdi a:3 c6 P(x) : 6xa -l* - tz* + 3x+ 2 Giii phucrng trinh duoc KrSt qu6: xr:2)x2: - t; or:l : '2 0,5; *: -l = -0,3333. 3 -4l1 + V6i u: a co P(x) :6x4 -7x3 - 12x2 + !x+ 2 6"5 GiAi phucrng trinh dugc --R.,L? K6t qu6: x1:1,1455; ve: -0,1455; n, :-i = -1,3333,xq:1 =7,5 Bei 2. (10 dicm).
Giả sử \(P\left(x\right)\) chia hết \(Q\left(x\right)\)
\(\Rightarrow P\left(x\right)=\left(x^2+x-2\right).R\left(x\right)\)
Thay \(x=1\) và \(x=-2\) vào ta được:
\(\left\{{}\begin{matrix}P\left(1\right)=0.R\left(x\right)=0\\P\left(-2\right)=0.R\left(x\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b+1=0\\-2a+b+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-2\end{matrix}\right.\)
=)