K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2021

a/ \(M\left(x\right)=-x^2+5\)

Có \(-x^2\le0\forall x\)

=> \(M\left(x\right)\le5\forall x\)

=> M(x) không có nghiệm.

2/

Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có

\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)

\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)

\(\Leftrightarrow a=2\)

Vậy...

P(-7)=0

=>49a+28-10=0

=>49a+18=0

hay a=-18/49

22 tháng 5 2022

Đa thức có một nghiệm là `-7`

`=>` Thay `x=-7` vào `P(x)=0` có:

    `a.(-7)^2-4.(-7)-10=0`

`=>49a+28-10=0`

`=>49a=-18`

`=>a=-18/49`

 

6 tháng 5 2023

a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)

dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.

7 tháng 5 2023

tại sao a7 + b = 5a + 2b lại bằng  2a = b vậy ạ

 

28 tháng 12 2018

Giải bài 12 trang 90 SGK Toán 7 Tập 2 | Giải toán lớp 7

27 tháng 3 2018

Vì đa thức \(M_{\left(x\right)}=ax^2+5-3\) có nghiệm là \(\frac{1}{2}\) nên:

\(M\left(\frac{1}{2}\right)=0\Leftrightarrow a\left(\frac{1}{2}\right)^2+5-3=0\)

                          \(\Rightarrow a.\frac{1}{4}+2=0\)

                          \(\Rightarrow a.\frac{1}{4}=-2\)

                         \(\Rightarrow a=-2\div\frac{1}{4}\)

                         \(\Rightarrow a=-8\)

DD
23 tháng 5 2021

1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

Với \(x=1\)\(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).

Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).

DD
23 tháng 5 2021

2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)

Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).

Ta có hệ: 

\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).

Ta có f(x)=ax^2+5x-6                             (1)

Thay x=-2 vào (1) ta đc

f(-2)=a(-2)^2+5(-2)-6

       = 4a-10-6

       =4a-16

Mà x=-2 là 1 nghiệm của f(x)

suy ra 4a-16=0

           4a=16

           a=4

Vậy a=4

27 tháng 4 2018

Ta có P(0,5)=0

=>a0,5^2+5.0,5-3=0

=>0,25a+2,5-3=0

=>0,25a-0,5=0

=>0,25a=0,5

=>a=0,5-0,25

a=0,25

Vậy hệ số a là 0,25

Bài 1. Cho đa thức P(x) = x3 + m.x2 + n.x + p, với m, n, p là các số nguyên. Biết rằng P(x) nhận x = 1 là một nghiệm và P(√2) = 1. Xác định đa thức P(x).Bài 2. Xác định một đa thức P(x) hệ số nguyên biết P(x) có bậc 2 và nhận số x = √2 + 1 là một nghiệm.Bài 3. Cho đa thức P(x) = ax2 + bx + c, với a, b, c là các số nguyên dương. Biết x = 1 − √2 là một nghiệm của đa thức. Chứng minh rằng (11a +...
Đọc tiếp

Bài 1. Cho đa thức P(x) = x3 + m.x2 + n.x + p, với m, n, p là các số nguyên. Biết rằng P(x) nhận x = 1 là một nghiệm và P(√2) = 1. Xác định đa thức P(x).
Bài 2. Xác định một đa thức P(x) hệ số nguyên biết P(x) có bậc 2 và nhận số x = √2 + 1 là một nghiệm.
Bài 3. Cho đa thức P(x) = ax2 + bx + c, với a, b, c là các số nguyên dương. Biết x = 1 − √2 là một nghiệm của đa thức. Chứng minh rằng (11a + 3b + 2c) chia hết cho 3
Bài 4. Cho đa thức P(x)=ax3 + bx2 + cx + d.Biết rằng a - 2b + 4c - 8d = 0 , chứng minh rằng có ít nhất một nghiệm.
Bài 5. Cho đa thức P(x) = (x – 3)2 + 3. Tìm x thỏa mãn P(P(P(P(x)))) = 65539.
Bài 6. Xác định đa thức P(x) có bậc 2 thỏa mãn: P(0) = - 2 và 4P(x) – P(2x – 1) = 6x – 6.
Bài 7. Cho đa thức P(x) = ax3 + bx2 + cx + d có giá trị nguyên với mọi x nguyên thì 6a; a + b + c ; d đều nhận giá trị nguyên.

1
27 tháng 11 2021

Bài 3:

\(x=1-\sqrt{2}\Leftrightarrow x^2=3-2\sqrt{2}=2-2\sqrt{2}+1\\ \Leftrightarrow x^2=2x+1\Leftrightarrow x^2-2x-1=0\\ \Leftrightarrow P\left(x\right)=ax^2+bx+c=x^2-2x-1\\ \Leftrightarrow a=1;b=-2;c=-1\\ \Leftrightarrow11a+3b+2x=11-6-2=3⋮3\)