K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

H(1)=12+a.1+b=1=> a+b=0 => a=-b (1)

H(-1)=(-1)2+a.(-1)+b=3 <=> b-a=2

Thay (1) vào ta được: b-(-b)=2

<=> 2b=2 => b=1; a=-1

Đs: a=-1; b=1

28 tháng 6 2017

\(f\left(x\right)=x^2+ax+b\)

\(f\left(1\right)=1+a+b=0\)

\(f\left(0\right)=b=4\)

Vậy hệ số b bằng 4.

Thay vào f(1) ta có \(f\left(1\right)=1+a+4=0\Rightarrow a=-5\)

Vậy hệ số a là -5, hệ số b là 4.

14 tháng 8 2020

a) \(ax^2+2x-1=a\left(x^2+\frac{2}{a}x\right)-1\)

\(\Leftrightarrow a\left(x^2+2x.\frac{1}{a}+\left(\frac{1}{a}\right)^2\right)-\frac{1}{a}-1\)

\(\Leftrightarrow a\left(x+\frac{1}{a}\right)^2-\frac{1}{a}-1\)

Để phương trình có 1 nghiệm \(\Leftrightarrow-\frac{1}{a}-1=0\Rightarrow a=-1\)

b)\(x^2+ax-3=x^2+2x\frac{a}{2}+\left(\frac{a}{2}\right)^2-\left(\frac{a}{2}\right)^2-3\)

\(\left(x+\frac{a}{2}\right)^2-\frac{a^2}{4}-3\)

Để phương trình có 1 nghiệm \(\Leftrightarrow-\frac{a^2}{4}-3=0\Leftrightarrow a^2=-12\) ( vô lý)

Không tồn tại hệ số a để phương trình có 1 nghiệm

c) \(x^2+5x+a=x^2+2x\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2+a\)

\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2+a-\frac{25}{4}\)

Để phương trình có 1 nghiệm \(\Leftrightarrow a-\frac{25}{4}=0\Leftrightarrow a=\frac{25}{4}\)

31 tháng 5 2019

Ta có:+)  H(2) = 2.22 + a.2 + b = 5

=>  8 + 2a + b = 5

=> 2a + b = -3 (1)

+) H(1) = 2.12 + a.1 + b = -1

=> 2 + a + b = -1

=> a + b = -3 (2)

Từ (1) và (2) trừ vế cho vế :

(2a + b) - (a + b) = -3 - (-3)

=> a = 0

Thay a = 0 vào (2) ta được :

0 + b = -3 => b = -3

Vậy ...

\(H\left(2\right)=5\Rightarrow2.2^2+a.2+b=8+2a+b=5\)

\(\Rightarrow2a+b=-3\)

\(H\left(1\right)=-1\Rightarrow2.1^2+a+b=2+a+b=-1\)

\(\Rightarrow a+b=-3\)

\(\Rightarrow2a+b-\left(a+b\right)=a=-3-\left(-3\right)=0\)

\(\Rightarrow b=-3\)

Vậy a = 0;  b = -3

7 tháng 5 2018

Ta có \(P\left(0\right)=c=1\)

và \(P\left(1\right)=a+b+c=3\)

=>\(a+b=2\)

=> \(a=2-b\)(1)

và \(P\left(-1\right)=a-b+c=3\)

=> \(a-b=2\)(2)

Thế (1) vào (2), ta có:

\(2-b-b=2\)

=> \(2-2b=2\)

=> \(-2b=0\)

=> \(b=0\)

=> \(a=2\)