\(\le\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2015

Tính H(-1) = a.(-1)2 + b.(-1) + c = a - b + c

H(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c

=> H(-1) + H(-2) = 5a - 3b + 2c = 0 

=> H(-1) = - H(-2)

=> H(-1) . H(-2) = [- H(-2)].h(-2) = - H2(-2) \(\le\) 0 Vì H2(-2) \(\ge\) 0

=> ĐPCM

29 tháng 6 2020

Ta có \(H\left(-1\right)=a-b+c;H\left(-2\right)=4a-2b+c\)

\(\Rightarrow H\left(-1\right)+H\left(-2\right)=a-b+c+4a-2b+c=5a-3b+2c=0\left(1\right)\)

\(\Rightarrow H\left(-1\right)=-H\left(-2\right)\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow H\left(-1\right)\cdot H\left(-2\right)=-H\left(-2\right)\cdot H\left(-2\right)=-\left[H\left(-2\right)\right]^2=\le0\)

7 tháng 5 2017

Ta có:H(-1)=a-b+c

H(-2)=4a-2b+c

=>H(-1)+H(-2)=5a-3b+2c=0(giả thiết)

=>H(-1)=-H(-2)

=>H(-1).H(-2)=-H(-2).H(-2)=-H(-2)2\(\le\)0

Vậy...

12 tháng 5 2017

Theo đề bài cho ta có:

H(-1) = a - b - c

H(-2) = 4a - 3b + 2c

\(\Rightarrow\)\(\Rightarrow\) H(-1) + H(-2)=(a - b + c) +( 4a -3b +2c) = 5a - 3b + 2c = 0

→ H(-1) = -H(-2)

→ H(-1) . H(-2) = -[H(-2)]2

Mà -[H(-2)] 2 lớn hơn hoặc bằng 0 ↔ -[H(-2)]2 0

Vậy H(-1) . H(-2) ≤ 0 (đpcm)

1 câu trả lời

Toán Đại số lớp 7

\(H\left(-1\right)=a-b+c\)        (1)

\(H\left(-2\right)=4a-2b+c\)        (2)

Lấy (1) + (2) vế theo vế được

\(H\left(-1\right)+H\left(-2\right)=5a-3b+2c=0\)

Suy ra    \(H\left(-1\right)=H\left(-2\right)=0\Rightarrow H\left(-1\right).H\left(-2\right)=0\)

Hoặc \(H\left(-1\right)\)\(H\left(-2\right)\)có 1 số âm và một số dương   

\(\Rightarrow H\left(-1\right).H\left(-2\right)<0\)

Vậy      \(H\left(-1\right).H\left(-2\right)\le0\)

12 tháng 5 2018

Ta có :       5a-3b+2c =0.

H(x)= ax2 +bx+c. => H(-1) = a.(-1)2 +b.(-1) +c= a-b+c.

=>H(-2)= a.(-2)2 +b.(-2)+c= 4a-2b+c.

=> H(-1) + H(-2) = 5a-3b+ 2c= 0.

=> H(-1) = H(-2). => H(-1). H(-2)=[H(-1)]2 > = 0. 

Vậy H(-1).H(-2) >= 0 (dpcm)

Nhớ k đúng cho mình nha. Kêu gọi bạn bè k luôn nha. Có bài gì khó thì hỏi mình. Mình bày cho . MÌNH CŨNG LỚP 7. MONG DDUOCJ KẾT BẠN.

12 tháng 5 2018

Ta có: \(H\left(-1\right)=-\left(H-2\right)\)

\(\Rightarrow H\left(-1\right).H\left(-2\right)=-H^2\left(-2\right)\le0\)

\(\Rightarrow H\left(-1\right).H\left(-2\right)\ge0\left(đpcm\right)\)

Mà đề bài bảo chứng minh nhỏ hơn hoặc bằng hay lớn hơn hoặc bằng vậy bạn ????

Nếu là bé hơn hoặc bằng thì nói mình làm lại nha

29 tháng 8 2018

undefined

5 tháng 4 2019

bạn có thể giải thích giúp mình tại sao khi

tổng P(-1)vàP(-2) = 0 thì suy ra được P(-1)= -P(-2) không

cảm ơn bạn nhiều

3 tháng 5 2018

Nếu như theo mik ns thì bài toán làm sau đây

\(p\left(-1\right)=a\left(-1\right)^2-b.1+c=a-b+c\) (1)

\(p\left(2\right)=a\left(2^2\right)+b.2+c=4a-2b+c\) (2)

Lấy (1)+(2)

\(p\left(-1\right)+p\left(-2\right)=5a-3b+2c=0\)

\(p\left(-1\right)=-P\left(-2\right)\)\(=p\left(2\right)\)

Lấy p(-1).p(2) trái dấu

\(\Rightarrow p\left(-1\right).p\left(2\right)\le0\)

\(\Rightarrow p\left(-1\right).p\left(-2\right)\le0\)

3 tháng 5 2018

Bạn ơi phải là p(-1).p(2) hoặc p(1).p(-2)

7 tháng 8 2018

http://123link.pro/1VmdhZJ

26 tháng 4 2017

Ta có:

\(H\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}H\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\H\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}H\left(-1\right)=a-b+c\\H\left(-2\right)=4a-2b+c\end{matrix}\right.\)

\(\Rightarrow H\left(-1\right)+H\left(-2\right)\) \(=\left(a-b+c\right)+\left(4a-2b+c\right)\)

\(=\left(a+4a\right)-\left(b+2b\right)+\left(c+c\right)\)

\(=5a-3b+2c=0\Rightarrow H\left(-1\right)=-H\left(-2\right)\)

\(\Rightarrow H\left(-1\right).H\left(-2\right)=\left[-H\left(-2\right)\right].H\left(-2\right)\)

\(=-H^2\left(-2\right)\)

\(H^2\left(-2\right)\ge0\Leftrightarrow-H^2\left(-2\right)\le0\)

Vậy \(H\left(-1\right).H\left(-2\right)\le0\) (Đpcm)

26 tháng 4 2017

Nhanh nhá ngày kia nộp!! Lớp viuuuuu~~~

Giải

\(P\left(-1\right)=\left(a-b+c\right)\)

\(P\left(-2\right)=\left(4a-2b+c\right)\)

\(P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)=5a-3b+2c=0\)

\(\Rightarrow\) \(P\left(-1\right)=-P\left(-2\right)\)

Do đó \(P\left(-1\right).P\left(-2\right)\) = \(\left[P\left(-2\right)\right]^2\le0\)