Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho g( x ) = 0
\(\Leftrightarrow\)( x - 2 )( x - 3 ) = 0
\(\Leftrightarrow\)x = 2 hoặc x = 3
f( 2 ) = 2 . 23 - 3 . a . 22 + 2 . 2 + b = 20 - 12a + b ( 1 )
f( 3 ) = 2 . 33 - 3 . a . 32 + 2 . 3 + b = 48 - 27a + b ( 2 )
Lấy ( 1 ) và ( 2 ) ta có :
- 28 + 15a = 0
\(\Rightarrow\)15a = 28
\(\Rightarrow\)a = 28 / 15
\(\Rightarrow\)b = 12 / 5
Lời giải:
$f(x)=x^4+x^3+ax^2+4x+b=x^2(x^2-2x+2)+3x(x^2-2x+2)+(a+4)x^2-2x+b$
$=(x^2+3x)(x^2-2x+2)+(a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$
$=(x^2+3x+a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$
$=(x^2+3x+a+4)g(x)+2(a+3)x-2(a+4)+b$
Để $f(x)\vdots g(x)$ thì:
$2(a+3)x-2(a+4)+b=0,\forall x$
$\Rightarrow a+3=-2(a+4)+b=0$
$\Rightarrow a=-3; b=2$
Thực hiện phép chia đa thức \(f\left(x\right)\)cho \(g\left(x\right)\)ta được:
\(2x^3-3x^2+ax+b=\left(x^2-x+2\right)\left(2x-1\right)+\left(a-5\right)x+\left(b+2\right)\)
Để \(f\left(x\right)\)chia hết cho \(g\left(x\right)\)thì:
\(\hept{\begin{cases}a-5=0\\b+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-2\end{cases}}\).
Lời giải:
a. $f(x)=x^4-3x^2+2x-7=x^3(x+2)-2x^2(x+2)+x(x+2)-7$
$=(x+2)(x^3-2x^2+x)-7=g(x)(x^3-2x^2+x)-7$
Vậy $f(x)$ chia $g(x)$ được thương là $x^3-2x^2+x$ và dư là $-7$
b. Theo phần a $f(x)=(x^3-2x^2+x)g(x)-7$
Với $x$ nguyên, để $f(x)\vdots g(x)$ thì $7\vdots g(x)$
$\Leftrightarrow x+2$ là ước của $7$
$\Rightarrow x+2\in\left\{\pm 1;\pm 7\right\}$
$\Leftrightarrow x\in\left\{-3; -1; 5; -9\right\}$
c.
Theo định lý Bezout về phép chia đa thức, để $K(x)=-2x^3+x-m\vdots x+2$ thì: $K(-2)=0$
$\Leftrightarrow -2(-2)^3+(-2)-m=0$
$\Leftrightarrow 14-m=0$
$\Leftrightarrow m=14$
Định lí Bê-du: Số dư của phép chia đa thức cho nhị thức bằng giá trị của tại
Để F(x) chia hết cho (x-1) thì F(1)=0\(\Rightarrow2.1^3-3a.1^2+2.1+b\)\(=2-3a+2+b=0\Leftrightarrow-3a+b=-4\left(1\right)\)
Để F(x) chia hết cho (x+2) thì F(-2)=0\(\Rightarrow2.\left(-2\right)^3-3a\left(-2\right)^2+2\left(-2\right)+b\)\(=-16-12a-4+b=0\Rightarrow-12a+b=20\left(2\right)\)
Từ (1) và (2), ta có hpt:\(\left\{{}\begin{matrix}-3a+b=-4\\-12a+b=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-8}{3}\\b=-12\end{matrix}\right.\)
Vậy với \(a=\dfrac{-8}{3},b=-12\) thì F(x) chia hết (x - 1)và (x + 2).