K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 6 2019

\(f\left(x\right)=x^{2018}\left(x^2-2x-1\right)+5\left(x^2-2x-1\right)+8\)

Với \(x=1-\sqrt{2}\) ta có:

\(x^2-2x-1=\left(1-\sqrt{2}\right)^2-2\left(1-\sqrt{2}\right)-1\)

\(=3-2\sqrt{2}-2+2\sqrt{2}-1=0\)

\(\Rightarrow f\left(1-\sqrt{2}\right)=\left(1-\sqrt{2}\right)^{2018}.0+5.0+3=3\)

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Lời giải:

Áp dụng BĐT Cô-si cho các số không âm ta có:

\(x^4+x^4+y^4+z^4\geq4\sqrt[4]{x^8y^4z^4}=4|x^2yz|\ge 4x^2yz\)

\(x^4+y^4+y^4+z^4\geq 4xy^2z\)

\(x^4+y^4+z^4+z^4\geq 4xyz^2\)

Cộng theo vế và rút gọn:

\(\Rightarrow x^4+y^4+z^4\geq xyz(x+y+z)=3xyz\)

Dấu "=" xảy ra khi \(x=y=z\). Kết hợp với $x+y+z=3$ suy ra $x=y=z=1$

Do đó:

\(M=x^{2018}+y^{2019}+z^{2020}=1+1+1=3\)

28 tháng 2 2020

Theo đề bài ta có :

\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)

\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)

Thay \(x=1\) vào (1) ta có :

\(F\left(1\right)=-4\)

\(\Leftrightarrow1+a+b+c=-4\)

\(\Leftrightarrow a+b+c=-5\)

Thay \(x=-2\) vào (2) ta có :

\(F\left(-2\right)=5\)

\(\Leftrightarrow-8+4a-2b+c=5\)

\(\Leftrightarrow4a-2b+c=13\)

Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)

....

3 tháng 8 2020

\(5X\left(X-2020\right)+X=2020\)

\(\Leftrightarrow5X^2-10100X+X=2020\)

\(\Leftrightarrow5X^2-10099X=2020\)

\(\Leftrightarrow5X^2-10099X-2020=0\)

\(\Leftrightarrow5X^2-10100X+x-2020=0\)

\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)

\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)

3 tháng 8 2020

\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)

\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)

\(\Leftrightarrow-11\left(4x-9\right)=0\)

\(\Leftrightarrow x=\frac{9}{4}\)

a: \(\Leftrightarrow x^2+x+4x+4+m-4⋮x+1\)

=>m-4=0

hay m=4

b: \(\Leftrightarrow2x^2+4x-x-2+m+2⋮x+2\)

=>m+2=0

hay m=-2

c: \(\Leftrightarrow x^4-x^3+5x^2+x^2-x+5+m-5⋮x^2-x+5\)

=>m-5=0

hay m=5

a: \(\left(3x-1\right)^2-\left(x+3\right)^3=\left(2-x\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow9x^2-6x+1-x^3-9x^2-27x-27=8-x^3\)

\(\Leftrightarrow-x^3-33x-26-8+x^3=0\)

=>-33x=34

hay x=-34/33

b: \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)-\left(x^2-1\right)^2=2\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)-\left(x^2-1\right)^2=2\)

\(\Leftrightarrow x^4-1-x^4+2x^2-1=2\)

\(\Leftrightarrow2x^2=4\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

c: \(x^2-2\sqrt{3}x+3=0\)

\(\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\)

hay \(x=\sqrt{3}\)

d: \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)^2=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-x+\sqrt{2}\right)=0\)

\(\Leftrightarrow x-\sqrt{2}=0\)

hay \(x=\sqrt{2}\)

17 tháng 10 2017

$a)$ \(x^{12}:\left(-x\right)^6\)

\(=x^{12}:x^6\)

\(=x^{12-6}\)

\(=x^6\)

$b) $ \(\left(-x\right)^7:\left(-x\right)^5\)

\(=\left(-x\right)^{7-5}\)

\(=\left(-x\right)^2\)

\(=x^2\)

$c)$ \(5x^2y^4:10x^2y\)

\(=\dfrac{1}{2}y^3\)

$e)$ \(\left(-xy\right)^{14}:\left(-xy\right)^7\)

\(=\left(-xy\right)^{14-7}\)

\(=\left(-xy\right)^7\)

Các câu còn lại tương tự nha bạn!

18 tháng 2 2018

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

20 tháng 8 2018

Bài 14:Tìm x

a,\(x-3=\left(3-x\right)^2\)

\(\Rightarrow\left(x-3\right)-\left(3-x\right)^2=0\)

\(\Rightarrow\left(x-3\right)+\left(x-3\right)^2=0\)

\(\Rightarrow\left(x-3\right)\left(1+x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

b,\(\left(2x-5\right)-\left(5+2x\right)^2=0\)

\(\Rightarrow\left(2x-5\right)+\left(2x-5\right)^2=0\)

\(\Rightarrow\left(2x-5\right)\left(1+2x-5\right)=0\)

\(\Rightarrow\left(2x-5\right)\left(2x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\2x-4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=5\\2x=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=2\end{matrix}\right.\)