Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) f(x) = x(x - 5) + 2(x - 5)
x(x - 5) + 2(x - 5) = 0
<=> (x - 5)(x - 2) = 0
x - 5 = 0 hoặc x - 2 = 0
x = 0 + 5 x = 0 + 2
x = 5 x = 2
=> x = 5 hoặc x = 2
a, f(x) có nghiệm
\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
->tự kết luận.
b1, để g(x) có nghiệm thì:
\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)
\(\Rightarrow2x^2-4x-x^2+5+4x=0\)
\(\Rightarrow x^2+5=0\)
Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)
suy ra: k tồn tại \(x^2+5=0\)
Vậy:.....
b2,
\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)
\(=x^2-5x+2x-10\)
\(=x^2-3x-10\)
\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)
\(=x^2+5-x^2+3x-10=3x-5\)
Trên tia phân giác góc A của tam giác ABC (AB>AC) lấy điểm M
CM: MB+MC<AB+AC
\(f\left(-2\right)=4a-2b+c\)
\(f\left(3\right)=9a+3b+c\)
\(f\left(-2\right)+f\left(3\right)=13a+b+2c=0\)
\(\Rightarrow f\left(-2\right)=-f\left(3\right)\Rightarrow f\left(-2\right).f\left(3\right)=-f\left(-2\right)^2\le0\)
p/s: nhớ t nữa ko :>
\(f\left(x\right)=ax^2+bx+c\)
\(f\left(-2\right)=a.\left(-2\right)^2+\left(-2\right).b+c=4a-2b+c\)
\(f\left(3\right)=a.3^2+3.b+c=9a+3b+c\)
\(f\left(3\right)+f\left(-2\right)=4a-2b+c+9a+3b+c=13a+b+2c=0\)
\(\Rightarrow f\left(3\right)=-f\left(-2\right)\Rightarrow f\left(3\right)f\left(-2\right)=-\left[f\left(3\right)\right]^2\le0\left(đpcm\right)\)
a,\(f\left(x\right)=0\)khi \(x=\orbr{\begin{cases}-1\\5\end{cases}}\),
b\(f\left(x\right)>0\)khi \(x>0\)
c\(f\left(x\right)< 0\)khi\(-5< x< -1\)
a, f(x)=\(x^2+4x-5=0\)
\(\Rightarrow x^2+4x^{ }=5\)
\(x.\left(x+4\right)=5\)
x+4=5 suy ra x=1