Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải sẽ dài lắm nhé
x1,x2 là hai nghiệm của \(P(x)\)nên :
\(P(x_1)=ax_1^2+bx_1+c=0\) \((1)\)
\(P(x_2)=ax^2_2+bx^2+c=0\)
\(P(x_1)-P(x_2)=a\left[x^2_1-x^2_2\right]+b\left[x_1-x_2\right]=0\)
\(a\left[x_1+x_2\right]\left[x_1-x_2\right]+b\left[x_1-x_2\right]=0\)
\(\left[x_1-x_2\right]\left[a\left\{x_1+x_2\right\}+b\right]=0\)
Vì x1 \(\ne\)x2 nên x1 - x2 \(\ne\)0 do đó
\(a\left[x_1+x_2\right]+b=0\Rightarrow b=-a\left[x_1+x_2\right]\) \((2)\)
Thế 2 vào 1 ta được :
\(ax^2_1-a\left[x_1+x_2\right]\cdot x_1+c=0\)
\(\Rightarrow c=ax_1\left[x_1+x_2\right]-ax^2_1=ax_1x_2\) \((3)\)
Thế 2 vào 3 vào P\((x)\)ta được :
\(P(x)=ax^2+bx+c=ax^2-ax\left[x_1+x_2\right]+ax_1x_2\)
\(=ax^2-axx_1-axx_2+ax_1x_2=a\left[x^2-xx_1-xx_2+x_1x_2\right]\)
\(=a\left[x\left\{x-x_1\right\}-x_2\left\{x-x_1\right\}\right]=a\left[x-x_1\right]\left[x-x_2\right]\)
Vậy : ....
x1 ; x2 là 2 ngiệm của P(x) => P(x1) = P (x2) = 0
=> ax12 + bx1 + c = ax22 + bx2 + c = 0
=> ax12 + bx1 + c - ( ax22 + bx2 + c) = 0
<=> a. (x12 - x22 ) + b.(x1 - x2) = 0 <=> a. (x1 - x2). (x1 + x2) + b.(x1 - x2) = 0
<=> (x1 - x2). [ a.(x1 + x2) + b ] = 0 mà x1 ; x2 khác nhau nên a.(x1 + x2) + b = 0 => b = - a.(x1 + x2) (*)
+) ax12 + bx1 + c = 0 => c = - ( ax12 + bx1) = - x1. (ax1 + b) = - x1 . (-ax2) = ax1. x2 (Do (*))
vậy c = ax1.x2 (**)
Thay b ; c từ (*) và (**) vào P(x) ta được P(x) = ax2 -ax.(x1 + x2) + ax1.x2 = ax2 - ax.x1 - ax.x2 + ax1.x2
= ax. (x - x1) - ax2 . (x - x1) = (ax - ax2). (x - x1) = a. (x - x2). (x - x1) => ĐPCM
nhìn nó dài nhưng chỉ cần lập luận vài bước thui
Điều kiện : \(x_1,x_2,x_3,...,x_{2000}\ne0.\)
Từ (1) suy ra \(2x_1x_2=x_2^2+1>0\Rightarrow x_1\)và \(x_2\)cùng dấu.
Tương tự ta cũng có:
Từ (2) suy ra \(x_2\)và \(x_3\)cùng dấu
.....................................................
Từ (1999) suy ra \(x_{1999}\)và \(x_{2000}\)cùng dấu
Từ (2000) suy ra \(x_{2000}\)và \(x_1\)cùng dấu
Như vậy : các ẩn số \(x_1,x_2,...,x_{2000}\)cùng dấu .
Mặt khác nếu \(\left(x_1,x_2,...,x_{2000}\right)\)là một nghiệm thì \(\left(-x_1,-x_2,...,-x_{2000}\right)\)cũng là nghiệm . Do đó chỉ cần xét \(x_1,x_2,...,x_{2000}>0\).
Khi đó : \(2x_1=x_2+\frac{1}{x_2}\ge2\Rightarrow x_1\ge1\Rightarrow\frac{1}{x_1}\le1\)
\(2x_2=x_3+\frac{1}{x_3}\ge2\Rightarrow x_2\ge1\Rightarrow\frac{1}{x_2}\le1\)
...............................................................................................
Tương tự , ta có: \(x_{2000}\ge1\Rightarrow\frac{1}{x_{2000}}\le1\)
Suy ra : \(\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_{2000}}\le x_1+x_2+...+x_{2000}\)
Mặt khác; nếu cộng từng vế 2000 phương trình của hệ , ta có:
\(x_1+x_2+...+x_{2000}=\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_{2000}}\)
Dấu '=' xảy ra khi và chỉ khi \(x_1=x_2=...=x_{2000}=1\)
Tóm lại hệ đã cho có 2 nghiệm :
\(\left(x_1,x_2,...,x_{2000}\right)=\left(1;1;...;1\right),\left(-1;-1;...;-1\right).\)
Theo Vi-ét cho 3 số (chứng minh bằng hệ số bất định)
\(\hept{\begin{cases}x_1+x_2+x_3=0\\x_1x_2+x_2x_3+x_1x_3=-3\\x_1x_2x_3=-1\end{cases}}\)
\(A=\frac{1+2x_1}{1+x_1}+\frac{1+2x_2}{1+x_2}+\frac{1+2x_3}{1+x_3}\)
\(=3+\frac{x_1}{1+x_1}+\frac{x_2}{1+x_2}+\frac{x_3}{1+x_3}\)
\(=3+\frac{x_1\left(1+x_2\right)\left(1+x_3\right)+x_2\left(1+x_1\right)\left(1+x_3\right)+x_3\left(1+x_1\right)\left(1+x_2\right)}{\left(1+x_1\right)\left(1+x_2\right)\left(1+x_3\right)}\)
\(=3+\frac{x_1\left(1+x_2+x_3+x_2x_3\right)+x_2\left(1+x_1+x_3+x_1x_3\right)+x_3\left(1+x_1+x_2+x_1x_2\right)}{\left(1+x_1+x_2+x_1x_2\right)\left(1+x_3\right)}\)
\(=3+\frac{\left(x_1+x_2+x_3\right)+2\left(x_1x_2+x_2x_3+x_3x_1\right)+3x_1x_2x_3}{1+x_1+x_2+x_3+x_1x_2+x_1x_3+x_2x_3+x_1.x_2.x_3}\)
\(=3+\frac{0+2.\left(-3\right)+3.\left(-1\right)}{1+0-3-1}\)
\(=6\)
Do x1 là một nghiệm của đa thức f(x) nên ta có: \(x_1^3-3x_1+1=0\)
\(\Leftrightarrow\)\(\left(x_1+1\right)\left(x_1^2-x_1+1\right)=3x_1\)\(\Leftrightarrow\)\(x_1+1=\frac{3x_1}{x_1^2-x_1+1}\)
Có: \(A==\frac{1+2x_1}{1+x_1}+\frac{1+2x_2}{1+x_2}+\frac{1+2x_3}{1+x_3}=3+\left(\frac{x_1}{1+x_1}+\frac{x_2}{1+x_2}+\frac{x_3}{1+x_3}\right)\)
\(A=3+\left(\frac{x_1\left(x_1^2-x_1+1\right)}{3x_1}+\frac{x_2\left(x^2_2-x_2+1\right)}{3x_2}+\frac{x_3\left(x_3^2-x_3+1\right)}{3x_3}\right)\)
\(A=3+\frac{\left(x_1^2+x_2^2+x_3^2\right)-\left(x_1+x_2+x_3\right)+3}{3}\)
\(A=3+\frac{\left(x_1+x_2+x_3\right)^2-2\left(x_1x_2+x_2x_3+x_3x_1\right)-\left(x_1+x_2+x_3\right)+3}{3}\)
Đến đây theo Vi-et bậc 3
\(\hept{\begin{cases}x_1+x_2+x_3=0\\x_1x_2+x_2x_3+x_3x_1=-3\end{cases}}\)
cái trên thì bn dùng BĐT Bunhiakovshi nha
cái dưới hơi rườm tí mik ko bt lm đúng ko
\(f\left(x\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)\)
\(f\left(x-1\right)=\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)
\(\Rightarrow f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)-\)
\(\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)
\(=x\left(x+1\right)\left[\left(x+2\right)\left(ax+b\right)-\left(x-1\right)\left(ax-a+b\right)\right]\)
\(=x\left(x+1\right)[x\left(ax+b\right)+2\left(ax+b\right)-x\left(ax-a+b\right)\)
\(+\left(ax-a+b\right)]\)
\(=x\left(x+1\right)(ax^2+bx+2ax+2b-ax^2+ax\)
\(-bx+ax-a+b)\)
\(=x\left(x+1\right)\left(4ax-a+3b\right)\)
Mà theo đề \(f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(2x+1\right)\)
Đồng nhất hệ số là ra
theo đề bài ta có:
\(\int\left(x_1\right)=2x_1+3\\ \int\left(x_2\right)=2x_2+3\\ suyra:\int\left(x_1\right)+\int\left(x_2\right)=2x_1+3+2x_2+3=2\cdot5+6=16\)
(có gì sai xin mọi người chỉ bảo thêm ạ!)
x1=a; x2=b
a)
(a+1)^2>=4a^2=(2a)^2
<=>(a+1-2a)(a+1+2a)>=0
<=>(1-a)(3a+1)>=0
a€[0;1]
3a+1>0
1-a>=0
=>dpcm