K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2018

\(f\left(x\right)=\left(x-2\right)\left(x-3\right)Q\left(x\right)+ax+b\) (Q(x) là thương, ax + b là số dư)

f (x) chia cho x - 2 dư 3 tức f(2) = 3 \(\Rightarrow2a+b=3\) (1)

f(x) chia x - 3 dư 4 tức f(3) = 4 \(\Rightarrow3a+b=4\) (2)

Từ (1) và (2), ta được \(3a+b-\left(2a+b\right)=4-3=1\Rightarrow a=1\Rightarrow b=1\)

Vậy đa thức dư là ax + b = x + 1

7 tháng 12 2018

cảm ơn bạn nhiều lắm 

6 tháng 2 2022

22-21-3213-3124-4-24-2-4-143

17 tháng 2 2015

Huyền hỏi 2 bài liên tiếp à viết nhanh thế

17 tháng 2 2015

Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?

28 tháng 10 2020

600000000<1

28 tháng 10 2020

Cho mình xin cách làm đi

NM
19 tháng 1 2021

có \(f\left(x\right)=\left(x+1\right)A\left(x\right)+5\)

\(f\left(x\right)=\left(x^2+1\right)B\left(x\right)+x+2\)

do f(x) chia cho \(\left(x+1\right)\left(x^2+1\right)\)là bậc 3 nên số dư là bậc 2. ta có \(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)C\left(x\right)+ax^2+bx+c=\left(x+1\right)\left(x^2+1\right)C\left(x\right)+a\left(x^2+1\right)+bx+c-a\)

\(=\left(x^2+1\right)\left(C\left(x\right).x+C\left(x\right)+a\right)+bx+c-a\)

Vậy \(bx+c-a=x+2\Rightarrow\hept{\begin{cases}b=1\\c-a=2\end{cases}}\)

mặt khác ta có \(f\left(-1\right)=5\Leftrightarrow a-b+c=5\Rightarrow a+c=6\Rightarrow\hept{\begin{cases}a=2\\c=4\end{cases}}\)

vậy số dư trong phép chia f(x) cho \(x^3+x^2+x+1\)là \(2x^2+x+4\)