Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài f(0)= 2017 => c= 2017
f(1)= 2018 => a + b + c = 2018 => a + b = 1 (1)
f(-1)= 2019 => a - b + c= 2019 => a - b= 2 (2)
Cộng theo vế của (1) và (2), ta được
2a = 3 => a = 3/2
=>b= -1/2
Vậy a=3/2, b=-1/2, c= 2017. Khi đó f(2)= 6 - 2 + 2017= 2021
Vậy f(2)= 2021
Ta có : f ( x ) = ax^2 + bx + c
Xét f ( 0 ) = a . 0^2 + b . 0 + c = 2018
=> c = 2018
Xét f ( 1 ) = a . 1^2 + b . 1 + c = 2019
=> a + b + c = 2019
= > a + b = 1 [ do c = 2018 theo trên rồi nhá ] ( 1 )
Xét f ( - 1 ) = a . ( -1 ) ^2 + b . ( -1 ) + c
=> a - b + c = 2017
=> a - b = -1 ( 2 )
Cộng ( 1 ) và ( 2 ) vế theo vế , ta được
a + b + a - b = 1 + ( - 1 )
= > 2. a = 0
= > a = 0
Trừ ( 1 ) và ( 2 ) vế theo vế ta được
a + b - a + b = 1 - ( - 1 )
=> 2 . b = 2
= > b = 1
Do đó : xét f ( - 2019 ) = a . ( - 2019 )^2 + b . ( - 2019 ) + c
=> 0 - 2019 + 2018
= - 1
Vậy f ( - 2019 ) = -1
[ nếu gặp các dạng bài này bạn cứ thay vào đa thức ban đầu rồi biến đổi tìm ra a , b , c nha ]
Ta có:
\(f\left(5\right)=125a+25b+5c+d\)
\(f\left(4\right)=64a+16b+4c+d\)
\(f\left(7\right)=343a+49b+7c+d\)
\(f\left(2\right)=8a+4b+2c+d\)
Xét:
\(f\left(5\right)-f\left(4\right)=125a+25b+5c+d-64a-16b-4c-d\)
\(=61a+9b+c=2019\)
Khi đó:
\(f\left(7\right)-f\left(2\right)=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c=5\left(61a+9b+c\right)+30=5\cdot2019+30⋮5\)
Vậy ta có đpcm
\(f\left(x\right)=ax^5+bx^3+2014x+1\)
\(\Rightarrow f\left(-x\right)=a\left(-x\right)^5+b\left(-x\right)^3+2014\left(-x\right)+1\)
\(=-ax^5-bx^3-2014x+1\)
\(\Rightarrow f\left(x\right)+f\left(-x\right)=2\)
\(\Rightarrow f\left(2015\right)+f\left(-2015\right)=2\)
Mà \(f\left(2015\right)=2\Rightarrow f\left(-2015\right)=0\)
Theo bài ra ta có:
\(\hept{\begin{cases}c=2016\\a+b+c=2017\\a-b+c=2018\end{cases}\Leftrightarrow2a+2c=4035\Leftrightarrow2a=4035-2016.2=3}\)
\(\Leftrightarrow a=\frac{3}{2}\)
thay vào ta tính dc b nha