Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giải:
Ta có:
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)
\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)
\(=13a+b+2c=0\)
\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)
\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)
Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)
b) Sửa đề:
Biết \(5a+b+2c=0\)
Giải:
Ta có:
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)
\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)
\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)
\(=5a+b+2c=0\)
\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)
\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)
Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)
Ta có \(f\left(-2\right)\times f\left(-3\right)=\left(4a-2b+c\right).\left(9a+3b+c\right)=\left(4a-2b+c\right).\left[13a+b+2c-\left(4a-2b+c\right)\right]\)
Mà \(13a+b+2c=0\) theo giả thiết.
\(\Rightarrow f\left(-2\right)\times f\left(3\right)=-\left[\left(4a-2b+c\right)^2\right]\)
\(\left(4a-2b+c\right)^2\) luôn \(\ge0\Rightarrow f\left(-2\right)\times f\left(3\right)\) \(\le0\)
Lời giải:
Ta có:
\(f(-2)=4a-2b+c\)
\(f(3)=9a+3b+c\)
\(\Rightarrow f(-2)+f(3)=13a+b+2c=0\) (theo giả thiết)
\(\Rightarrow f(-2)=-f(3)\Rightarrow f(-2)(f(3)=-f^2(3)\leq 0\)
Do đó ta có đpcm.
Ta có f(-2).f(3)=(4a-2b+c).(9a+3b+c)
=(4a-2b+c).(13a+b+2c-(4a-2b+c)
Mà 13a+b+2c=0\(\Rightarrow\)f(-2).f(3)=\(-\left[\left\{4a-2b+c\right\}^2\right]\)
Có (4a-2b+c)^2 luôn luôn \(\le\)0
Nên f(-2).f(3)\(\le\)0
Lời giải:
Ta có:
$f(-1)=a-b+c$
$f(2)=4a+2b+c$
Cộng lại ta có: $f(-1)+f(2)=5a+b+2c=0$
$\Rightarrow f(-1)=-f(2)$
$\Rightarrow f(-1)f(2)=-f(2)^2\leq 0$ (đpcm)
\(f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\)
\(=4a-2b+c\)
\(f\left(3\right)=a.3^2+b.3+c\)
\(=9a+3b+c\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=4a-2b+c+9a+3b+c\)
\(=13a+b+2c\)
\(=0\)
\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)
\(\Rightarrow f\left(-2\right).f\left(3\right)\le0\)
phải là Cm nhỏ hơn hoặc bằng 0 mới đúng nha bạn
Mà f(-2) . f(3) phải trong ngoặc ko tưởng nhầm đấy
Học tốt.
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\)
\(=4a-2b+c\)
\(\Rightarrow f\left(3\right)=a.3^2+b.3+c\)
\(=9a+3b+c\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)
\(=13a+b+2c=0\)
\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)
\(\Rightarrow f\left(-2\right).f\left(3\right)\le0\)