\(x^2\)+bx+c biết F(0)= 2016, F(1)= 2017 F(-1)

Tính F(2)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

Ta có :

\(f\left(0\right)=a.0^2+b.0+c=c=2015\)

\(f\left(1\right)=a.1^2+b.1+c=a+b+c=2016\)

\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c=2017\)

\(a+b+2015=2016\Rightarrow a+b=1\)

\(a-b+2015=2017\Rightarrow a-b=2\)

Cộng vế với vế ta được :\(\left(a+b\right)+\left(a-b\right)=1+2\)

\(\Leftrightarrow2a=3\Rightarrow a=\frac{3}{2}\)

\(\Rightarrow\frac{3}{2}+b=1\Rightarrow b=1-\frac{3}{2}=-\frac{1}{2}\)

\(\Rightarrow f\left(-2\right)=\frac{3}{2}.\left(-2\right)^2+\left(-\frac{1}{2}\right).\left(-2\right)+2015\)

\(=\frac{3}{2}.4+1+2015\)

\(=6+1+2015\)

\(=2022\)

Vậy \(f\left(-2\right)=2022\)

21 tháng 4 2019

f(0) = a.02 + b. 0 + c = 2016

<=> c =2016

f (1) = a.12 + b.1 + c =2017

<=> a + b =1        (1)

f ( -1 ) = a (-1)2 + b . (-1) +c =2018

<=> a -b =2           (2)

Từ (1),(2) <=> a = 1,5 ; b = -0,5

=> F(x) = 1,5x2  -0,5 x + 2016

F (2) = 1,5 . 22 -0,5 .2 +2016 

         = 6 -1 +2016 =2021

21 tháng 4 2019

Ta có: 

\(F\left(0\right)=a.0^2+b.0+c=2016\)

\(\Rightarrow c=2016\)

\(F\left(1\right)=a.1^2+b.1+c=2017\)

\(\Rightarrow a+b=1\)

\(F\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=2018\)

\(\Rightarrow a-b=2\)

Vì a + b =1 và a - b = 2 nên \(\Rightarrow a=\frac{3}{2};b=\frac{-1}{2}\)

Vậy \(F\left(2\right)=\frac{3}{2}.2^2-\left(\frac{-1}{2}\right).2+2016=2023\)

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

5 tháng 4 2017

a) Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)

\(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)

Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)

b) Sửa đề:

Biết \(5a+b+2c=0\)

Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)

\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)

\(=5a+b+2c=0\)

\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)

\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)

Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)

5 tháng 4 2021

\(f\left(0\right)=ax^2+bx+c=a.0^2+b.0+c=c=4\)

\(f\left(1\right)=ax^2+bx+c=a+b+c=3\)

\(f\left(-1\right)=a-b+c=7\)

Ta có hpt \(\hept{\begin{cases}c=4\\a+b+c=3\\a-b+c=7\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-1\left(1\right)\\a-b=3\left(2\right)\end{cases}}\)

Lấy (1) - (2) ta được : \(2b=-4\Rightarrow b=-2\)

Thay b = -2 vào (1) \(a-2=-1\Rightarrow a=1\)

Vậy \(\left(a;b;c\right)=\left(1;-2;4\right)\)

22 tháng 5 2019

Ta có: f(0) = c \(⋮\) 3

f(1) = a + b + c \(⋮\) 3 \(\Rightarrow\) a + b \(⋮\) 3 (1)

f(-1) = a - b + c \(⋮\) 3 \(\Rightarrow\) a - b \(⋮\) 3 (2)

Từ (1) và (2) suy ra a + b + a - b \(⋮\) 3 và a + b - a + b \(⋮\) 3

\(\Rightarrow\) \(\left\{{}\begin{matrix}2a⋮3\\2b⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a⋮3\\b⋮3\end{matrix}\right.\)

Vậy a, b, c \(⋮\) 3

Y
22 tháng 5 2019

+ \(\left\{{}\begin{matrix}f\left(0\right)⋮3\\f\left(1\right)⋮3\\f\left(-1\right)⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}c⋮3\\a+b+c⋮3\\a-b+c⋮3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b⋮3\\a-b⋮3\\c⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a⋮3\\-2b⋮3\\c⋮3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a⋮3\\b⋮3\\c⋮3\end{matrix}\right.\)