Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Link bài làm của mình đây nhé
https://olm.vn/hoi-dap/detail/831153598726.html
vì f(1)=f(-1)
suy ra a-b+c=a+b+c
=> a-b=a+b
=> 2b=0
=>b=0
thay vào f(x) và f(-x) suy ra điều phải cm
Với x=1 => f(x)=f(1)= a.1^2+b.1+c=a+b+c(1)
x=-1 => f(x)=f(-1)= a.(-1)^2+b.(-1)+c=a-b+c(2)
Từ (1) và (2) => b=-b
=> b.x=(-b).(-x)
=> f(x)=f(-x)=> đpcm
a) f(0) = c; f(0) nguyên => c nguyên (*)
f(1) = a+ b + c ; f(1) nguyên => a+ b + c nguyên (**)
f(2) = 4a + 2b + c ; f(2) nguyên => 4a + 2b + c nguyên (***)
Từ (*)(**)(***) => a + b và 4a + 2b nguyên
4a + 2b = 2a + 2.(a + b) có giá trị nguyên mà 2(a+ b) nguyên do a+ b nguyên
nên 2a nguyên => 4a có giá trị nguyên mà 4a + 2b nguyên do đó 2b có giá trị nguyên
b) f(3) = 9a + 3b + c = (a+ b + c) + (4a + 2b) + 4a
Vì a+ b + c ; 4a + 2b; 4a đều có giá trị nguyên nên f(3) có giá trị nguyên
f(4) = 16a + 4b + c = (a+ b) + (9a + 3b + c) + 3. 2a
Vì a+ b; 9a + 3b + c; 2a đều nguyên nên f(4) có giá trị nguyên
f(5) = 25a + 5b + c = (16a + 4b + c) + (a+ b) + 4. 2a
Vì 16a + 4b + c ; a+ b; 2a đều có giá trị nguyên nên f(5) có giá trị nguyên
\(f\left(0\right)=a.0^2+b.0+c=c\) có giá trị nguyên
\(f\left(1\right)=a+b+c\) có giá trị nguyên => a + b có giá trị nguyên
\(f\left(2\right)=4a+2b+c=2a+2\left(a+b\right)+c\)=> 2a có giá trị nguyên
=> 4a có giá trị nguyên
=> 2b có giá trị nguyên.
Ta có : f(0) = a . 02 + b . 0 + c = c \(\in\)Z
f(1) = a . 12 + b . 1 + c = a + b + c
vì c \(\in\)Z \(\Rightarrow\)a + b \(\in\)Z ( 1 )
f(2) = a . 22 + b . 2 + c = 4a + 2b + c = 2 . ( 2a + b ) + c
vì c \(\in\)Z \(\Rightarrow\)2 . ( 2a + b ) \(\in\)Z \(\Rightarrow\)2a + b \(\in\)Z ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)( 2a + b ) - ( a + b ) \(\in\) Z \(\Rightarrow\)a \(\in\)Z
\(\Rightarrow\)b \(\in\)Z
Vậy f(x) thuộc Z \(\forall\)x thuộc Z