K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

Ta có:

\(f\left(x\right)=0\), do đó với mọi giá trị của x thì đa thức này bằng 0

Ta có:

\(f\left(1\right)=a.1^2+b.1+c=a+b+c=0\)

\(\Rightarrow a+b+c+3=0+3=3\)

Vậy  \(a+b+c=3\)

 

 

 

27 tháng 3 2016

a;b;c cho trc là sao?

16 tháng 4 2017

Ta có : \(f\left(x\right)⋮3\) với \(\forall x\in Z\)

\(\Rightarrow f\left(0\right)=a.0^2+b.0+c=0+0+c=c⋮3\)

\(Do\) \(f\left(x\right)⋮3\) với \(\forall x\in Z\)

\(\Rightarrow f\left(1\right)=a.1^2+b.1+c=a+b+c⋮3\left(1\right)\)

\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c⋮3\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(a+b+c\right)-\left(a-b+c\right)=a+b+c-a+b-c=2b⋮3\)

Do 2 ko chia hết cho 3 \(\Rightarrow\) Để \(2b⋮3\) thì \(b⋮3\)

Ta lại có : \(a+b+c⋮3\)

\(b⋮3\) ; \(c⋮3\)

\(\Rightarrow\) Để tổng trên chia hết cho 3 thì a \(⋮3\)

Vậy a,b,c \(⋮3\)

4 tháng 5 2017

đây là toán lớp mấy vậy

AH
Akai Haruma
Giáo viên
3 tháng 2 2017

Lời giải:

Vì $f(x)$ chia hết cho $3$ với mọi \(x\in\mathbb{Z}\) nên ta có:

\(\left\{\begin{matrix} f(0)=c\vdots 3\\ f(1)=a+b+c\vdots 3 3\\ f(-1)=a-b+c\vdots 3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c\vdots 3\\ a+b\vdots 3(1)\\ a-b\vdots 3 (2) \end{matrix}\right.\)

Từ \((1),(2)\Rightarrow 2a\vdots 3\). Mà $2$ không chia hết cho $3$ nên $a$ chia hết cho $3$

Có $a+b$ chia hết cho $3$ và $a$ chia hết cho $3$ nên $b$ cũng chia hết cho $3$

Do đó ta có đpcm

19 tháng 3 2016

khó quá chịu thôi

28 tháng 2 2016

a/ f(x) = 0 => x2 + 4x - 5 = 0 => (x - 1)(x + 5) = 0 => x = 1 hoặc x = -5

      Vậy x = 1 , x = -5

b/ f(x) > 0 => x2 + 4x - 5 > 0 => (x - 1)(x + 5) > 0 => x - 1 > 0 và x + 5 > 0 => x > 1 và x > -5 => x > 1 

                                                                          hoặc x - 1 < 0 và x + 5 < 0 => x < 1 và x < -5 => x < -5

      Vậy x > 1 hoặc x < -5

c/ f(x) < 0 => x2 + 4x - 5 < 0 => (x - 1)(x + 5) < 0 => x - 1 > 0 và x + 5 < 0 => x > 1 và x < -5 => vô lí

                                                                          hoặc x - 1 < 0 và x + 5 > 0 => x < 1 và x > -5 => -5 < x < 1

      Vậy -5 < x < 1

16 tháng 2 2016

a) Ta có:

\(M\left(x\right)=A\left(x\right)-2.B\left(x\right)+C\left(x\right)\)

\(=\left(2x^5-4x^3+x^2-2x+2\right)-2.\left(x^5-2x^4+x^2-5x+3\right)+\left(x^4+3x^3+3x^2-8x+4\frac{3}{16}\right)\)

\(=2x^5-4x^3+x^2-2x+2-2x^5+4x^4-2x^2+10x-6+x^4+4x^3+3x^2-8x+\frac{67}{16}\)

\(=\left(2x^5-2x^5\right)+\left(4x^4+x^4\right)+\left(-4x^3+4x^3\right)+\left(x^2-2x^2+3x^2\right)+\left(-2x+10x-8x\right)+\left(2-6+\frac{67}{16}\right)\)

\(=0+5x^4+0+2x^2+0+\frac{3}{16}\)

\(=5x^4+2x^2+\frac{3}{16}\)

b) Thay  \(x=-\sqrt{0,25}=-0,5\); ta có:

\(M\left(-0,5\right)=5.\left(-0,5\right)^4+2.\left(-0,5\right)^2+\frac{3}{16}\)

\(=5.0,0625+2.0,25+\frac{3}{16}\)

\(=\frac{5}{16}+\frac{8}{16}+\frac{3}{16}=\frac{16}{16}=1\)

c) Ta có:

\(x^4\ge0\) với mọi x

\(x^2\ge0\) với mọi x

\(\Rightarrow5x^4+2x^2+\frac{3}{16}>0\) với mọi x

Do đó không có x để M(x)=0

15 tháng 4 2016

a+b+c+d=0 nhá bạn!!!

15 tháng 4 2016

Để x=1 là nghiệm của f(x)

thì a.13+b.12+c.1+d=0

<=>a+b+c+d=0

Vậy..........
 

21 tháng 3 2016

Ta có:

\(f\left(1\right).f\left(-1\right)=\left(a+b\right).\left(-a+b\right)\)

\(\Rightarrow\left(a+b\right)\left(-a+b\right)=\left(a+b\right)^2\)

\(\Rightarrow-a+b=a+b\)

\(\Rightarrow a=-a\)

\(a\ne0\) thì làm sao có a thỏa mãn được?

21 tháng 3 2016

Trần Thùy Dung ko biết thì đừng có làm. 5 - 3a - 3b = 5. Bài này trong violympic.

17 tháng 4 2016

vì P(x) chia hết cho 3 với mọi x nên ta xét các trường hợp sau:

- ta có: P(0) chia hết cho 3. mà P(0) = c nên ta suy ra c chia hết cho 3

- ta có: P(1) chia hết cho 3. Mà P(1)=a+b+c nên ta suy ra a+b+c chia hết cho 3

lại có c chia hết cho 3 (đã chứng minh)

nên suy ra a+b chia hết cho 3

- ta có ; P(2) chia hết cho 3. mà P(2)= 4a+2b+c=2a+2(a+b)+c

mà  c chia hết cho 3, a+b chia hết cho 3 ( đã chứng minh)

nên suy ra 2a chia hết cho 3

mà (2,3)=1    (2 số nguyên tố cùng nhau)

suy ra a chia hết cho 3

mà a+b chia hết cho 3

nên suy ra b chia hết cho 3

vậy a,b,c chia hết cho 3