\(ax^3+bx^2+cx+d\) với a là số nguyên dương . Biết f (5) - f ( 4 )...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Giải:

Ta có: \(f\left(5\right)-f\left(4\right)=2012\)

\(\Leftrightarrow\left(125a+25b+5c+d\right)\)\(-\left(64a+16b+4c+d\right)=2012\)

\(\Leftrightarrow61a+9b+c=2012\)

Lại có: \(f\left(7\right)-f\left(2\right)\)

\(=\left(343a+49b+7c+d\right)-\) \(\left(8a+4b+2c+d\right)\)

\(=335a+45b+5c=305a+45b+5c+30a\)

\(=5\left(61a+9b+c\right)+30a=2012+30a\)\(=2\left(1006+15a\right)\)

Do \(a\) là số nguyên nên ta được: \(2\left(1006+15a\right)⋮2\)

Vậy \(f\left(7\right)-f\left(2\right)\) là hợp số (Đpcm)

23 tháng 4 2017

f (5)-f(4)=(125a+25b+5c+d)-(64a+19b+4c+d) =61a+9b+c=2012

f(7)-f(2)=(343a+49b+7c+d)-(8a+4b+2c+d)=335a+45b+5c=5(61a+9b+c)+30

=5*(2012+6) chia hết cho 5 mà 5*(2012+6)>5 nên là hợp sô

19 tháng 6 2020

Ta có:

\(f\left(5\right)=125a+25b+5c+d\)

\(f\left(4\right)=64a+16b+4c+d\)

\(f\left(7\right)=343a+49b+7c+d\)

\(f\left(2\right)=8a+4b+2c+d\)

Xét:

\(f\left(5\right)-f\left(4\right)=125a+25b+5c+d-64a-16b-4c-d\)

\(=61a+9b+c=2019\)

Khi đó:

\(f\left(7\right)-f\left(2\right)=343a+49b+7c+d-8a-4b-2c-d\)

\(=335a+45b+5c=5\left(61a+9b+c\right)+30=5\cdot2019+30⋮5\)

Vậy ta có đpcm

14 tháng 12 2021

phải là 30a chứ bạn

 

Mấy cái này mk kho bít sorry!!!!!!253564656464646474748949474626515466575757575665555

9 tháng 5 2022

easy

13 tháng 5 2022

\(f\left(5\right)-f\left(4\right)=\left(125a+25b+5c+d\right)-\left(64a+16b+4c+d\right)=61a+9b+c=2019\)

\(f\left(7\right)-f\left(2\right)=\left(343a+49b+7c+d\right)-\left(8a+4b+2c+d\right)=335a+45b+5c=5.\left(61a+9b+c\right)+30a=2019+30a⋮3\)

\(\Rightarrowđpcm\)

6 tháng 4 2018

Làm hơi dài dòng tẹo nhé
f(0)=d là số lẻ
f(1)=a+b+c+d là số lẻ => a+b+c là số chẵn
Giả sử nghiệm x chẵn => f(x) lẻ khác 0 => loại
Giả sử nghiệm x lẻ
=> Tính chẵn lẻ của ax3 phụ thuộc vào a
     Tính chẵn lẻ của bx2 phụ thuộc vào b
     Tính chẵn lẻ của cx phụ thuộc vào c
     d là số lẻ 
Mà a+b+c là số chẵn=> ax3+bx2+cx là số chẵn => ax3+bx2+cx+d là số lẻ khác 0
Vậy f(x) không thể có nghiệm nguyên 
Hơi khó hỉu chút nhé ahihi
 

4 tháng 5 2018

Sai rồi bạn ơi

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Lời giải:

Ta có:

\(f(5)-f(4)=2012\)

\(\Leftrightarrow (a.5^3+b.5^2+c.5+d)-(a.4^3+b.4^2+c.4+d)=2012\)

\(\Leftrightarrow 61a+9b+c=2012\)

Do đó:

\(f(7)-f(2)=(a.7^3+b.7^2+c.7+d)-(a.2^3+b.2^2+c.2+d)\)

\(=335a+45b+5c=30a+5(61a+9b+c)\)

\(=30a+5.2012=5(6a+2012)\vdots 5\)

\(f(7)-f(2)=30a+5.2012>5, \forall a\in\mathbb{Z}^+\). Do đó $f(7)-f(2)$ là hợp số (đpcm)

9 tháng 7 2021

Chữ A lộn ngược đó là j thế ạ

20 tháng 4 2019

Cần chứng tỏ rằng f(-1) = 0. Thật vậy : f(-1) = a.(-1)3  + b.(-1)2 + c.(-1) + d = a(-1) + b.1 - c +d = - a + b - c + d = b + d - a - c

Mà a + c = b + d <=> b + d = a + c => (b + d) - (a + c) = 0 => b + d - a - c = 0

Vậy -1 là một nghiệm của đa thức