Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(f\left(5\right)=125a+25b+5c+d\)
\(f\left(4\right)=64a+16b+4c+d\)
\(f\left(7\right)=343a+49b+7c+d\)
\(f\left(2\right)=8a+4b+2c+d\)
Xét:
\(f\left(5\right)-f\left(4\right)=125a+25b+5c+d-64a-16b-4c-d\)
\(=61a+9b+c=2019\)
Khi đó:
\(f\left(7\right)-f\left(2\right)=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c=5\left(61a+9b+c\right)+30=5\cdot2019+30⋮5\)
Vậy ta có đpcm
Mấy cái này mk kho bít sorry!!!!!!253564656464646474748949474626515466575757575665555
\(f\left(5\right)-f\left(4\right)=\left(125a+25b+5c+d\right)-\left(64a+16b+4c+d\right)=61a+9b+c=2019\)
\(f\left(7\right)-f\left(2\right)=\left(343a+49b+7c+d\right)-\left(8a+4b+2c+d\right)=335a+45b+5c=5.\left(61a+9b+c\right)+30a=2019+30a⋮3\)
\(\Rightarrowđpcm\)
Làm hơi dài dòng tẹo nhé
f(0)=d là số lẻ
f(1)=a+b+c+d là số lẻ => a+b+c là số chẵn
Giả sử nghiệm x chẵn => f(x) lẻ khác 0 => loại
Giả sử nghiệm x lẻ
=> Tính chẵn lẻ của ax3 phụ thuộc vào a
Tính chẵn lẻ của bx2 phụ thuộc vào b
Tính chẵn lẻ của cx phụ thuộc vào c
d là số lẻ
Mà a+b+c là số chẵn=> ax3+bx2+cx là số chẵn => ax3+bx2+cx+d là số lẻ khác 0
Vậy f(x) không thể có nghiệm nguyên
Hơi khó hỉu chút nhé ahihi
Lời giải:
Ta có:
\(f(5)-f(4)=2012\)
\(\Leftrightarrow (a.5^3+b.5^2+c.5+d)-(a.4^3+b.4^2+c.4+d)=2012\)
\(\Leftrightarrow 61a+9b+c=2012\)
Do đó:
\(f(7)-f(2)=(a.7^3+b.7^2+c.7+d)-(a.2^3+b.2^2+c.2+d)\)
\(=335a+45b+5c=30a+5(61a+9b+c)\)
\(=30a+5.2012=5(6a+2012)\vdots 5\)
Mà \(f(7)-f(2)=30a+5.2012>5, \forall a\in\mathbb{Z}^+\). Do đó $f(7)-f(2)$ là hợp số (đpcm)
Giải:
Ta có: \(f\left(5\right)-f\left(4\right)=2012\)
\(\Leftrightarrow\left(125a+25b+5c+d\right)\)\(-\left(64a+16b+4c+d\right)=2012\)
\(\Leftrightarrow61a+9b+c=2012\)
Lại có: \(f\left(7\right)-f\left(2\right)\)
\(=\left(343a+49b+7c+d\right)-\) \(\left(8a+4b+2c+d\right)\)
\(=335a+45b+5c=305a+45b+5c+30a\)
\(=5\left(61a+9b+c\right)+30a=2012+30a\)\(=2\left(1006+15a\right)\)
Do \(a\) là số nguyên nên ta được: \(2\left(1006+15a\right)⋮2\)
Vậy \(f\left(7\right)-f\left(2\right)\) là hợp số (Đpcm)
f (5)-f(4)=(125a+25b+5c+d)-(64a+19b+4c+d) =61a+9b+c=2012
f(7)-f(2)=(343a+49b+7c+d)-(8a+4b+2c+d)=335a+45b+5c=5(61a+9b+c)+30
=5*(2012+6) chia hết cho 5 mà 5*(2012+6)>5 nên là hợp sô