Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm đại thôi, chán hình rồi )): nghề của con.
Câu 1 :
\(A\left(x\right)=3x^3+2x+3x^2-6\)
\(B\left(x\right)=2x^2-3x^3-7x+6\)
a, Sắp xếp : \(A\left(x\right)=3x^3+3x^2+2x-6\)
\(B\left(x\right)=-3x^3+2x^2-7x+6\)
b, Ta có : \(A\left(x\right)+B\left(x\right)=\left(3x^3+3x^2+2x-6\right)+\left(-3x^3+2x^2-7x+6\right)\)
\(=3x^3+3x^2+2x-6-3x^3+2x^2-7x+6\)
\(=5x^2-5x\)
\(A\left(x\right)-B\left(x\right)=\left(3x^3+3x^2+2x-6\right)-\left(-3x^3+2x^2-7x+6\right)\)
\(=3x^3+3x^2+2x-6+3x^3-2x^2+7x-6\)
\(=6x^3+x^2+9x-12\)
c, Đặt \(5x^2-5x=0\)
\(\Leftrightarrow x\left(5x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy rút ra đc ...tự lm bn nhé!...
Câu 2 :
a, \(4x+9=0\Leftrightarrow x=-\frac{9}{4}\)
Vậy nghiệm đa thức trên la -9/4
b, \(3x^2+4x=0\Leftrightarrow x\left(3x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{4}{3}\end{cases}}\)
Vậy nghiệm đa thức là 0;-4/3
H ( x)= 4x4 + 9x2 + 2
Ta có : 4x4 \(\ge\)0
9x2 \(\ge\)0
2 > 0
\(\Rightarrow\)4x4 + 9x2 + 2 > 0
\(\Rightarrow\) H ( x) > 0
Vậy đa thức H ( x) không có nghiệm
Hok tốt ^^
Ta có :4^4+9^2 >0
4^4+9^2+2> hoặc = 2
\(\Rightarrow4x^4+9x^2+2>0\)
\(\RightarrowđathứcH\left(x\right)khongcónghiệm\)
a)2x-1=0
=>\(x=\frac{1}{2}\)
b)\(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{4}\\x=5\end{matrix}\right.\)
c)\(\Leftrightarrow x^2=2\)\(\Rightarrow x=\pm\sqrt{2}\)
a, 2x-1=0
2x=1
x=\(\frac{1}{2}\)
b,(4x-3).(5+x)=0
th1:4x-3=0⇒4x=3⇒x=\(\frac{3}{4}\)
th2:5+x=0⇒x=-5
vậy nghiệm của đa thức trên là \(\frac{3}{4}\)và -5
c,\(x^2-2=0\Rightarrow\)\(x^2=2\Rightarrow x=\sqrt{2}\)⇒x=1 và -1
a) Ta có: \(x^2-x+2\)
\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\forall x\)
hay \(x^2-x+2>0\forall x\)
Vậy: Đa thức \(x^2-x+2\) vô nghiệm(đpcm)
b) Ta có: \(4x^2-12x+10\)
\(=\left(2x\right)^2-2\cdot2x\cdot3+3^2+1\)
\(=\left(2x-3\right)^2+1\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(2x-3\right)^2+1\ge1>0\forall x\)
hay \(4x^2-12x+10>0\forall x\)
Vậy: Đa thức \(4x^2-12x+10\) vô nghiệm(đpcm)
a) vì x2 > 0
=> x2 + 4x + 5 lớn hơn hoặc bằng 5 > 0 với x thuộc R
=> đa thức trên ko có nghiệm
b) vì x2 < 0
=> -x2 - x - 1 nhỏ hơn hoặc bằng -1 < 0
=> đa thức trên ko có nghiệm
a, =x2 + 2x + 2x + 4 +1
=x(x + 2) + 2(x + 2) +1
=(x + 2)(x + 2) + 1= (x + 2)2 +1 >= 1 > 0
=>x2 + 4x + 5 ko có nghiệm
b, =x2 - x - 1
=x2 - 1/2x - 1/2x - 1/4 - 1/3
=x(x - 1/2) - 1/2(x - 1/2) - 3/4
=(x - 1/2)(x - 1/2) - 3/4
=(x - 1/2)2 - 3/4 >= -3/4 \(\ne\) 0
=> -x2 - x - 1 ko có nghiệm