Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Tìm GTLN : Áp dụng BĐT bunhiacopski, ta có :
Dầu bằng xảy ra khi \(x-1=5-x\Leftrightarrow x=3\).
Sao ko hiện làm lại :
\(\left(\sqrt{x-1}.1+\sqrt{5-x}.1\right)^2\le\) bé hơn hoặc bằng ( 1 + 1 ) ( x - 1 + 5 -x ) = 8
a) ĐK \(x\ge1\)
với \(x\ge1\Rightarrow\hept{\begin{cases}\sqrt{x-1}\ge0\\\sqrt{5+x}\ge\sqrt{6}\end{cases}\Rightarrow\sqrt{x-1}+\sqrt{5+x}\ge\sqrt{6}}\)
dâu = xảy ra <=>x=1
b)Dặt ...=A
Ta có A=\(\frac{2}{9}x+\frac{1}{2x}+\frac{2}{9}y+\frac{1}{2y}+\frac{7}{9}\left(x+y\right)\)
Áp dụng BĐT cô-si, ta có \(\frac{2}{9}x+\frac{1}{2x}\ge\frac{2}{3}\)
tương tự có \(\frac{2}{9}y+\frac{1}{2y}\ge\frac{2}{3}\)
Mà \(x+y\ge3\Rightarrow\frac{7}{9}\left(x+y\right)\ge\frac{7}{3}\)
=>\(A\ge\frac{2}{3}+\frac{2}{3}+\frac{7}{3}=\frac{11}{3}\)
Dấu = xảy ra <=>\(x=y=\frac{3}{2}\)
^_^
Áp dụng bđt : (x+y)^2 < = 2.(x^2+y^2) thì :
(a+b)^2 < = 2.(a^2+b^2) = 2 . 2 = 4
=> a+b < = 2
Áp dụng bđt cosi ta có : 2a.b < = a^2+b^2 = 2
<=> a.b < = 1
Có :
P = \(\sqrt{ab}\). ( \(\sqrt{a.\left(a+8\right)}+\sqrt{b.\left(b+8\right)}\))
< = 1 . \(\frac{\sqrt{9a.\left(a+8\right)}+\sqrt{9b.\left(b+8\right)}}{3}\)
Áp dụng bđt : x.y < = (x+y)^2/4 thì :
P < = \(\frac{9a+a+8+9b+b+8}{2.3}\)
= \(\frac{10.\left(a+b\right)+16}{6}\)
< = \(\frac{10.2+16}{6}\)= 6
Dấu "=" xảy ra <=> a=b=1
Vậy ..............
Tk mk nha
\(\frac{1}{a+2}+\frac{3}{b+4}+\frac{2}{c+3}\le1\Leftrightarrow x+y+z\le1\)
\(Q=\left(\frac{1}{x}-1\right)\left(\frac{3}{y}-3\right)\left(\frac{2}{z}-2\right)=\frac{6\left(1-x\right)\left(1-y\right)\left(1-z\right)}{xyz}\ge\frac{6\left(y+z\right)\left(x+z\right)\left(x+y\right)}{xyz}\ge6.2.2.2=48\)
Min Q = 48 khi x =y=z = 1/3 => a =1 ; b =5; c =3
\(\sqrt{x+2+2\sqrt{x+1}}+\sqrt{x+2-2\sqrt{ }x+1}=\frac{x+5}{2}\)\(\frac{x+5}{2}\)
Phần a thay m vào giải hệ còn phần b, c thì............ để xem đã, đợi...
Ta có :
\(8x^3+y^6=A\left(2x+y^2\right)\)
\(\Leftrightarrow\left(2x\right)^3+\left(y^2\right)^3=A\left(2x+y^2\right)\)
\(\Leftrightarrow\left(2x+y^2\right)\left(4x^2+y^4-2xy^2\right)=A\left(2x+y^2\right)\)
Do \(2x+y^2\ne0\) nên ta có
\(A=4x^2+y^4-2xy^2\)