K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2016

TA có;

 x^2 >= 0 với mọi x

=> 2x^2 >= 0 với mọi x

=> x^2 + 2x^2 >= 0

=>  2 + x^2 + 2x^2 >= 2 > 0 

=> Đa thức không có nghiệm

22 tháng 5 2016

\(2+2x^2+x^2=3x^2+2>0\)

=> Đa thức không có nghiệm vì dấu đẳng thức không xảy ra 
:))

\(P\left(x\right)+Q\left(x\right)=x^3+x^2+x+2+x^3-x^2-x+2=2x^3+3\)

20 tháng 5 2021

a) Cho x2-1=0
            x2=1
            x= 1  hoặc -1

b)Cho P(x)=0
          -x2 + 4x - 5 = 0
          -x2 + 4x = 5
          -x   . x + 4x = 5
          x(-x+4) = 5

TH1: x= 5
TH2: -x+4 = 5
         -x= 1
          x=-1
xong bạn thay số rồi kết luận nhá

20 tháng 5 2021

a,\(x^2-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)

KL:...

b,\(P\left(x\right)=-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left[\left(x-2\right)^2+1\right]\le1\forall x\)

\(\Rightarrow VN\)

17 tháng 4 2017

\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)

Do \(\left(x+1\right)^2\ge0\Rightarrow f\left(x\right)=\left(x+1\right)^2+2\ge2>0\)

\(\Rightarrow f\left(x\right)\) vô nghiệm

Vậy đa thức f(x) không có nghiệm

17 tháng 4 2017

k có cahs nao khac ha bn ?

10 tháng 4 2015

Do x^2+2x>0,mà x^2+2x+2>2=> x^2+2x+2 không có nghiệm

22 tháng 4 2017

Cho đa thức: \(x^2+2x+2=0\)

\(=x^2+x+x+2=0\)

\(=x\left(x+1\right)+1\left(x+1\right)-1+2=0\)

\(=x\left(x+1\right)+1\left(x+1\right)+1=0\)

\(=\left(x+1\right).\left(x+1\right)=-1\)

\(\left(x+1\right)^2=-1\)(Vô lí)

\(\Rightarrow x^2+2x+2\) vô nghiệm

22 tháng 8 2016

f(x)=(2x4-x4)+(5x3-x3-4x3)+(3x2-x2)+1=x4+2x2+1=x4+x2+x2+1=x2(x2+1)+(x2+1)=(x2+1)(x2+1)=(x2+1)2

Ta có: x2>=0(với mọi x)

=>x2+1>=1(với mọi x)

=>(x2+1)2>0(với mọi x)

hay f(x)>0 với mọi x nên đa thức f(x) không có nghiệm

Vậy f(x) không có nghiệm

12 tháng 4 2018

Ta có : \(P\left(x\right)=x^2+2x+2\)

\(P\left(x\right)=\left(x^2+2x+1\right)+1\)

\(P\left(x\right)=\left(x+1\right)^2+1\)

Mà : \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow P\left(x\right)\ge1\)

Vậy đa thức P(x) vô nghiệm