Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Gọi tổng số các mặt của (H) là m và tổng số các cạnh của (H) là c.
Ta có: 2 ( p 1 + p 2 + … + p m ) + m = 2 c . Trong đó mỗi mặt nào đó có số cạnh là 2 p i + 1 , i = 1 , … , m
Do đó m chia hết cho 2. Hơn nữa có ít nhất một mặt ngũ giác nên tổng số mặt lớn hơn 5, do đó, tổng số cạnh lớn hơn 9 và tổng số đỉnh lớn hơn 5.
Hình chóp có đáy là ngũ giác của tổng số mặt là một số chẵn.
Đáp án A
Nếu số mặt là 6 dễ thấy số cạnh là 9, nếu số mặt là 4 thì số cạnh là 6 do đó (2) sai.
Giả sử đa diện (H) có các đỉnh là , gọi lần lượt là số các mặt của (H) nhận chúng là đỉnh chung. Như vậy mỗi đỉnh có cạnh đi qua. Do mỗi cạnh của (H) là cạnh chưn của đúng hai mặt nên tổng số các cạnh của H bằng
Vì c là số nguyên, là những số lẻ nên Đ phải là số chẵn. Ví dụ : Số đỉnh của hình chóp ngũ giác bằng sáu.
Chọn C
Có thể lấy HÌNH LẬP PHƯƠNG để kiểm nghiệm các phương án sai.
Ta cũng có thể chứng minh như sau: gọi tổng số các mặt của (H) là m và tổng số các cạnh của (H) là c. Ta có 4m=2c =>c=2m. Suy ra c là một số chẵn
Đáp án là .D...
Số cạnh trong M tam giác là 3 M tuy nhiên cạnh được nhắc lại 2 lần nên do đó 3 M = 2 C .
Đáp án C
Bài toán đúng với mọi đa diện có mặt là tam giác, vậy để đơn giản, ta chọn đa diện là tứ diện. Tứ diện có 4 mặt và 6 cạnh ⇒ M = 4 , C = 6 ⇒ 3 M = 2 C
Đáp án C.
Đặt (H) là hình tứ diện đều ABCD, cạnh bằng A. Gọi E ; F ; I ; J lần lượt là tâm của các mặt A B C ; A B D ; A C D ; B C D .
Kí hiệu như hình vẽ.
Ta có M E M C = M F M D = 1 3 ⇒ E F C D = 1 3 ⇒ E F = C D 3 = a 3 .
Vậy tứ diện là tứ diện đều có cạnh bằng a 3 .
Tỉ số thể tích của diện tích toàn phần tứ diện đều và tứ diện đều ABCD là a 3 a 2 = 1 9
Chọn D.
Phương pháp: Ta có thể sử dụng phương pháp loại trừ.
Cách giải: Ta thấy hình chóp ngũ giác thỏa mãn giả thiết nhưng không thỏa mãn các phương án A, B, C. Nên phương án D phù hợp.