K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Thay x=-1 và y=2 vào (d1), ta được:

\(a\cdot\left(-1\right)+b=2\)

=>-a+b=2

=>b=a+2

Đề bài này chưa đủ điều kiện để tìm ra cụ thể a,b nha bạn

23 tháng 11 2021

\(b,\left(d_3\right)//\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}a=1\\b\ne-1\end{matrix}\right.\left(1\right)\\ M\left(1;3\right)\in\left(d_3\right)\Leftrightarrow a+b=3\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Vậy \(\left(d_3\right):y=x+2\)

23 tháng 11 2021

(d1): Cho x = 0 A(0,0) B(1,2) 1 2 C -1 D  => y= 0 - A(0,0)

                x = 1 => y = 2  - B(1,2)

(d2): Cho x= 0 => y= -1 -C(0,-1)

                x = 1 => y = 0 - D(1,0)

 

 

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}3x+1=2x-3\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=2\cdot\left(-4\right)-3=-11\end{matrix}\right.\)

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}3x+1=2x-3\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=2\cdot\left(-4\right)-3=-11\end{matrix}\right.\)

7 tháng 11 2021

câu a làm seo

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Lời giải:

Vì $(d_1)\parallel (d_2)$ nên $a=1$

$A\in (d_1)$ nên $y_A=ax_A+b\Leftrightarrow 2=a(-1)+b$

$\Leftrightarrow b=2+a=2+1=3$

Vậy $a=1; b=3$

23 tháng 12 2021

\(b,\left(d_3\right)\text{//}\left(d_1\right)\Leftrightarrow\left\{{}\begin{matrix}a=1\\b\ne4\end{matrix}\right.\Leftrightarrow\left(d_3\right):y=x+b\)

PT hoành độ giao điểm \(\left(d_2\right);\left(d_3\right)\) là \(x+b=-2x-2\)

Mà 2 đt cắt tại hoành độ \(-3\) nên \(x=-3\)

\(\Leftrightarrow b-3=4\Leftrightarrow b=7\)

Vậy \(\left(d_3\right):y=x+7\)

24 tháng 10 2023

a/

\(\Rightarrow3=4m.2-m-5\Leftrightarrow m=\dfrac{8}{5}\)

b/

Tọa độ A là \(A\left(x_0;y_0\right)\)

\(\Rightarrow y_0=4mx_0-m-5\forall m\)

\(\Leftrightarrow\left(4x_0-1\right)m-\left(y_0+5\right)=0\forall m\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x_0-1=0\\y_0+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{4}\\y_0=-5\end{matrix}\right.\)

=> d1 luân đi qua điểm A cố định \(A\left(\dfrac{1}{4};-5\right)\forall m\)

Tọa độ B là \(B\left(x_1;y_1\right)\)

\(\Rightarrow y_1=\left(3m^2+1\right)x_1+m^2-4\forall m\)

\(\Leftrightarrow3m^2x_1+x_1+m^2-4-y_1=0\forall m\)

\(\Leftrightarrow\left(3x_1+1\right)m^2+x_1-y_1-4=0\forall m\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_1+1=0\\x_1-y_1-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{3}\\y_1=-\dfrac{13}{3}\end{matrix}\right.\)

=> d2 luân đi qua điểm B cố định \(B\left(-\dfrac{1}{3};-\dfrac{13}{3}\right)\)

d/ d1//d2 khi

\(\left\{{}\begin{matrix}4m=3m^2+1\\-m-5\ne m^2-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m_1=1\\m_2=\dfrac{1}{3}\end{matrix}\right.\\m^2+m+1\ne0\end{matrix}\right.\)

Ta có \(m^2+m+1>0\forall m\)

\(\Rightarrow\left[{}\begin{matrix}m_1=1\\m_2=\dfrac{1}{3}\end{matrix}\right.\)

e/

\(\Rightarrow4mx-\left(m+5\right)=\left(3m^2+1\right)x+m^2-4\) tìm m để phương trình có nghiệm

Tìm giao

\(\Rightarrow4mx-\left(m+5\right)=\left(3m^2+1\right)x+m^2-4\) khi m=2

Thay m=2 tìm x rồi thay vào d1 hoặc d2 để tìm y