K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2023

a: Tọa độ A là;

\(\left\{{}\begin{matrix}y=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)

Tọa độ C là;

\(\left\{{}\begin{matrix}-\dfrac{1}{2}x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}x=-1\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Tọa độ M là:

\(\left\{{}\begin{matrix}2x+4=-\dfrac{1}{2}x+1\\y=2x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=-3\\y=2x+4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-3:\dfrac{5}{2}=-\dfrac{6}{5}\\y=2\cdot\dfrac{-6}{5}+4=\dfrac{-12}{5}+\dfrac{20}{5}=\dfrac{8}{5}\end{matrix}\right.\)

A(-2;0); C(2;0); M(-1,2;1,6)

\(MA=\sqrt{\left(-2+1.2\right)^2+\left(0-1,6\right)^2}=\dfrac{4\sqrt{5}}{5}\)

\(MC=\sqrt{\left(2+1,2\right)^2+\left(0-1,6\right)^2}=\dfrac{8\sqrt{5}}{5}\)

\(AC=\sqrt{\left(-2-2\right)^2+\left(0-0\right)^2}=4\)

Vì \(MA^2+MC^2=AC^2\)

nên ΔMAC vuông tại M

b: \(S_{MAC}=\dfrac{1}{2}\cdot MA\cdot MC=\dfrac{1}{2}\cdot\dfrac{4\sqrt{5}}{5}\cdot\dfrac{8\sqrt{5}}{5}=\dfrac{16}{5}\)

21 tháng 11 2018

a)(d1) vuông góc với (d2) tại M (vì tích hệ số góc của 2 đường thẳng a

\(\times\)a'=2\(\times\)\(-\dfrac{1}{2}\)=-1

vậy tam giác MAC vuông tại M

21 tháng 11 2018

b)hoành độ M là nghiệm của phương trình:

2x+4=\(-\dfrac{1}{2}\)x+1

<=>2x+\(\dfrac{1}{2}\)x=1-4

<=>\(\dfrac{5}{2}\)x =-3

<=> x=\(\dfrac{-6}{5}\)

=> Y=2\(\times\)\(\dfrac{-6}{5}\)+4=\(\dfrac{8}{5}\)

AC=4(vẽ sơ đồ là bạn có thể bt đc)

diện tích tam giác AMC là

Samc=\(\dfrac{1}{2}\)\(\times\)AC\(\times\)MH

=\(\dfrac{1}{2}\)\(\times\)4\(\times\)\(\dfrac{8}{5}\)=\(\dfrac{16}{5}\)(đơn vị diện tích)

Câu 2: 

Tọa độ điểm A là:

\(\left\{{}\begin{matrix}y=0\\2x+4=0\end{matrix}\right.\Leftrightarrow A\left(-2;0\right)\)

Tọa độ điểm B là:

\(\left\{{}\begin{matrix}x=0\\y=2\cdot0+4=4\end{matrix}\right.\)

=>B(0;4)

Tọa độ điểm C là:

\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+1=0\end{matrix}\right.\Leftrightarrow C\left(2;0\right)\)

Tọa độ điểm D là:

\(\left\{{}\begin{matrix}x=0\\y=\dfrac{-1}{2}\cdot0+1=1\end{matrix}\right.\Leftrightarrow D\left(0;1\right)\)

Tọa độ điểm M là:

\(\left\{{}\begin{matrix}2x+4=-\dfrac{1}{2}x+1\\y=2x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1,2\\y=1,6\end{matrix}\right.\)

M(-1,2;1,6); A(-2;0); B(0,4); C(2;0); D(0;1)

\(\overrightarrow{MA}=\left(-0.8;-1.6\right)\)

\(\overrightarrow{MC}=\left(3.2;-1.6\right)\)

Vì \(\overrightarrow{MA}\cdot\overrightarrow{MC}=0\)

nên ΔMAC vuông tại M

b: \(MA=\sqrt{\left(-0.8\right)^2+\left(-1.6\right)^2}=\dfrac{4}{5}\sqrt{5}\)

\(MC=\sqrt{3.2^2+1.6^2}=\dfrac{8}{5}\sqrt{5}\)

\(S_{MAC}=\dfrac{4}{5}\sqrt{5}\cdot\dfrac{8}{5}\sqrt{5}:2=3.2\)

 

21 tháng 11 2022

Vì 2*(-1/2)=-1

nên (d1) vuông góc với (d2)

=>ΔMAC vuông tại M

NV
9 tháng 1 2024

Giao của (d1) và Ox: \(y_A=0\Rightarrow x_A+1=0\Rightarrow x_A=-1\)

GIao của (d2) và Ox: \(y_B=0\Rightarrow-x_B+1=0\Rightarrow x_B=1\)

Pt hoành độ giao điểm (d1) và (d2):

\(x+1=-x+1\Rightarrow x=0\Rightarrow y=1\)

\(\Rightarrow C\left(0;1\right)\)

Diện tích ABC:

\(S_{ABC}=\dfrac{1}{2}.\left|y_C\right|.\left|x_A-x_B\right|=\dfrac{1}{2}.1.2=1\)

Tọa độ C là:

\(\left\{{}\begin{matrix}x+1=-x+1\\y=x+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=0\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0+1=1\end{matrix}\right.\)

Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-1\end{matrix}\right.\)

Tọa độ B là:

\(\left\{{}\begin{matrix}y=0\\-x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-x=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

Vậy: A(-1;0); B(1;0); C(0;1)

\(AB=\sqrt{\left(1+1\right)^2+\left(0-0\right)^2}=2\)

\(AC=\sqrt{\left(0+1\right)^2+\left(1-0\right)^2}=\sqrt{1^2+1^2}=\sqrt{2}\)

\(BC=\sqrt{\left(0-1\right)^2+\left(1-0\right)^2}=\sqrt{1^2+1^2}=\sqrt{2}\)

Xét ΔABC có \(CA^2+CB^2=AB^2\)

nên ΔCAB vuông tại C

=>\(S_{ABC}=\dfrac{1}{2}\cdot CA\cdot CB=\dfrac{1}{2}\cdot\sqrt{2}\cdot\sqrt{2}=1\)