Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của d và (P): x 2 = (m + 2)x – m – 1
↔ x 2 − (m + 2)x + m + 1 = 0 (1)
(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0
↔ m < −1
Vậy m < −1
Đáp án: A
cj ơi, nó có trog câu hỏi tương tự rồi ạ, cô Loan giải rồi ạ!!^^
b) Phương trình hoành đọ giao điểm của (P) và (d) là:
x2 = mx + 1
<=> x2 - mx - 1 = 0
$\Delta$Δ = (-m)2 + 4 = m2 + 4 > 0 với mọi m
=> Pt có 2 nghiệm pb với mọi m
=> (P) luôn cắt (d) tại 2 điểm phân biệt A;B
Theo Vi - et ta có: xAxB = -1 < 0
=> xA ; xB trái dấu => A; B nằm khác phía so với trục tung
Xét phương trình hoành độ giao điểm
\(x^2=\left(m-1\right)x+m+4\Leftrightarrow x^2-\left(m-1\right)x-m-4=0\text{ }\left(\text{*}\right)\)
để d cắt P tại hai điểm phân biệt nằm ở hai phía của trục tung thì phương trình (*) có hai nghiệm trái dấu
khi đó điều kiện \(\Leftrightarrow-m-4< 0\Leftrightarrow m>-4\)
- Xét pt hoành độ gd....:
x2-(m-1)x-m-4=0 (1)
- để (P) cắt (d) tại 2 đm nằm về 2 phía của trục tung thì pt(1) có 2 nghiệm trái dấu nhau
- \(\left\{{}\begin{matrix}\Delta=\left(m-1\right)^2-4\left(-m-4\right)>0\\P=x_1x_2=-m-4< 0\Leftrightarrow m>-4\end{matrix}\right.\)
Vậy với m>-4 thì ....
Phương trình hoành độ giao điểm (d) và (P) là:
\(x^2=-\left(m+2\right)x-m-1\)
\(\Leftrightarrow x^2+\left(m+2\right)x+m+1=0\)(1)
Để (d) cắt (P) tại hai điểm phân biệt thì phương trình (1) có hai nghiêm phân biệt. Khi đó:
\(\Delta>0\Leftrightarrow\left(m+2\right)^2-4\left(m+1\right)=m^2>0\Leftrightarrow m\ne0\)
Với \(m\ne0\)phương trình (1) có hai nghiệm phân biệt \(x_1,x_2;x_1>x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=-m-2\\x_1x_2=m+1\end{cases}}\)
Do hai điểm nằm khác phía với trục tung nên \(x_1,x_2\)trái dấu nên \(m+1< 0\Leftrightarrow m< -1\).
\(\sqrt{y_1}+\sqrt{y_2}=\sqrt{x_1^2}+\sqrt{x_2^2}=\left|x_1\right|+\left|x_2\right|=x_1-x_2=2\)(do hai điểm nằm khác phía với trục tung)
\(\hept{\begin{cases}x_1+x_2=-m-2\\x_1-x_2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=\frac{-m}{2}\\x_2=\frac{-m-4}{2}\end{cases}}\)
\(x_1x_2=-\frac{m}{2}\left(\frac{-m-4}{2}\right)=\frac{m\left(m+4\right)}{4}=m+1\Leftrightarrow m=\pm2\).
Vậy \(m=-2\).
a: PTHDGĐ là:
x^2-(m-1)x-(m^2+1)=0
a*c=-m^2-1<0
=>(P) luôn cắt (d) tại hai điểm phân biệt nằm về hai phía của trục Oy
b: |x1|+|x2|=2căn 2
=>x1^2+x2^2+2|x1x2|=8
=>(x1+x2)^2-2x1x2+2|x1x2|=8
=>(m-1)^2-2(-m^2+1)+2|-m^2-1|=8
=>(m-1)^2+2(m^2+1)+2(m^2+1)=8
=>m^2-2m+1+4m^2+4=8
=>5m^2-2m-3=0
=>5m^2-5m+3m-3=0
=>(m-1)(5m+3)=0
=>m=1 hoặc m=-3/5
PTHĐGĐ là:
x^2-(m-1)x-m^2-1=0
Vì a*c=-m^2-1<0 với mọi m
nên (P) luôn cắt (d) tại hai điểm phân biệt nằm về hai phía của trục tung