K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔCBA vuông tại A và ΔABK vuông tại K có

\(\widehat{ABK}\) chung

Do đó: ΔCBA\(\sim\)ΔABK(g-g)

23 tháng 3 2022

             xét tam giác ABC vuông tại A ( gt)

                 \(AB^2+AC^2=BC^2\)

          =>  \(BC^2=AB^2+AC^2\)

                         =  \(21^2+28^2=1225\)

          =>  BC    =  \(\sqrt{1225}=35\left(BC>0\right)\)

             VẬY BC = 35 CM 

 

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF\(\sim\)ΔACB

29 tháng 8 2021

câu c đâu bạn

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

c: ΔABH vuông tại H

mà HE là đường cao

nên AE*AB=AH^2

ΔACH vuông tại H có HF là đường cao

nên AF*AC=AH^2=AE*AB

a: Xet ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: ΔABC đồng dạng với ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

 

22 tháng 4 2021

undefined

22 tháng 4 2021

MK chỉ cần câu d thôi