Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) ΔACE cân
Trả lời:
Xét ΔACH và ΔECH có :
AH = HE (gt)
AHCˆ=EHCˆ(=90o)
HC: chung
=> ΔACH=ΔECH (cạnh huyền-cạnh góc vuông)
=> CA= CE (2 cạnh tương ứng)
Xét ΔCAE có :
AC = CE (cmt)
=> ΔCAE cân tại C
~Học tốt!~
A B C D E K F
a, K;F là trung điểm của BD; BC (gt)
=> FK là đtb của tg BDC
=> FK // DC
mà DC // AB do ABCD là hình thang
=> FK//AB
b, K;E là trung điểm của BD; AD => KE là đtb của tg ABD
=> KE = 1/2 AB VÀ KE // AB
có AB = 4
=> ke = 2 cm
c, có KE // AB mà KF // AB
=> E;K;F thẳng hàng (tiên đề ơ clit)
A B C D H E
a) Xét ΔABH vÀ ΔDBH có:
BH:cạnh chung
\(\widehat{AHB}=\widehat{DHB}=90^o\)
AH=DH(gt)
=> ΔABH=ΔDBH(c.g.c)
b)Xét ΔAHC và ΔDHC có:
AH=DH(gt)
\(\widehat{AHC}=\widehat{DHC}=90^o\)
HC: cạnh chung
=> ΔAHC=ΔDHC(c.g.c)
=> AC=CD
c) Xét ΔBHD và ΔEHA có:
\(\widehat{BHD}=\widehat{EHA}=90^o\)
DH=AH(gt)
\(\widehat{BDH}=\widehat{EAH}\) ( sole trong do AE//BD)
=> ΔBHD=ΔEHA(g.c.g)
=> BH=EH
=>H là trung điểm của BE
Bài 1( Hình mik đăng lên trước nha, mới lại phần bn nối điểm K với B, điểm F với D hộ mik nhé)
a) Xét tam giác EFA và tam giác CAB, có:
AE = AC ( giả thiết)
AF = AB (giả thiết)
Góc EAF = góc BAC (2 góc đối đỉnh)
=> ΔEAF = ΔCAB (c.g.c)
b) Vì ΔEFA = ΔCAB (Theo a)
=> Góc ABC = Góc EFA (cặp góc tương ứng)
=> EF = BC (cặp cạnh tương ứng) (1)
Mà EK = KF = 1/2 EF (2)
BD = DC = 1/2 BC (3)
Từ (1), (2) và (3)
=> KF = BD
Xét ΔKFB và ΔFBD, có
Cạnh BF chung
KF = BD (chứng minh trên)
Góc EFB = Góc ABC (chứng minh trên)
=> ΔKFB =ΔDBF (c.g.c)
=> KB = FD (cặp cạnh tương ứng)
Ta có hình vẽ sau:
A H D B C 1 2 M N
a) \(\widehat{AHB}\) = \(\widehat{DHB}\) = \(\frac{180^o}{2}\) = 90o (2 góc kề bù)
Xét ΔABH và ΔDBH có:
BH là cạnh chung
\(\widehat{AHB}\) = \(\widehat{DHB}\) = 90o (cm trên)
AH = DH (gt)
=> ΔABH = ΔDBH (c.g.c) (đpcm)
b) Vì ΔABH = ΔDBH (ý a)
=> \(\widehat{B_1}\) = \(\widehat{B_2}\) ( 2 góc tương ứng)
= BC là tia phân giác của \(\widehat{ABD}\) (đpcm)
c) Vì ΔABH = ΔDBH => AB = DB (2 cạnh tương ứng)
Xét ΔABC và ΔDBC có:
BC là cạnh chung
\(\widehat{B_1}\) = \(\widehat{B_2}\) (ý b)
AB = DB (cm tên)
=> ΔABC = ΔDBC(c.g.c)
=> \(\widehat{BAC}\) = \(\widehat{BDC}\) (2 góc tương ứng) (đpcm)
d) Vì ΔABH = ΔDBH (ý a)
=> AB = DB => \(\frac{1}{2}\)AB = \(\frac{1}{2}\)DB
=> NB = ND = \(\frac{1}{2}\)DB
=> N là trung điểm của BD(đpcm)
a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
HB chung
HA=HD
Do đó: ΔABH=ΔDBH
b: Ta có: ΔABH=ΔDBH
nên \(\widehat{ABH}=\widehat{DBH}\)
hay BC là tia phân giác của góc ABD
Ta có hình vẽ:
A B C D H M N
a/ Xét tam giác ABH và tam giác DBH có:
BH: cạnh chung
\(\widehat{AHB}\)=\(\widehat{DHB}\)=900 (GT)
AH = HD (GT)
Vậy tam giác ABH = tam giác DBH (c.g.c)
b/ Ta có: tam giác ABH = tam giác DBH (câu a)
=> \(\widehat{ABH}\)=\(\widehat{DBH}\)( 2 góc tương ứng)
=> \(\widehat{ABC}\)=\(\widehat{DBC}\)
=> BC là phân giác của góc ABD (đpcm)
c/ Xét tam giác ABC và tam giác DBC có:
BC: cạnh chung
\(\widehat{ABC}\)=\(\widehat{DBC}\) (đã chứng minh)
AB = DB (vì tam giác ABH = tam giác DBH)
=> tam giác ABC = tam giác DBC (c.g.c)
=>\(\widehat{BAC}\)=\(\widehat{BDC}\)(2 góc tương ứng)
d/ Ta có: AB = DB (vì tam giác ABH = tam giác DBH)
Mà BM = AM
=> BN = DN
\(\Rightarrow\) Vậy N là trung điểm BD (đpcm)
a) Xét tam giác \(ABC\)vuông tại \(A\)trung tuyến \(AK\):
\(AK=KB=KC=\frac{BC}{2}\)(đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền)
Suy ra \(KA=KB=KC=KD\) (vì \(KD=KA\))
Xét tam giác \(KAC\)và tam giác \(KDB\):
\(KA=KD\)
\(\widehat{AKC}=\widehat{DKB}\)(đối đỉnh)
\(KC=KB\)
Suy ra \(\Delta KAC=\Delta KDB\left(c.g.c\right)\).
b) \(\Delta KAC=\Delta KDB\)suy ra \(\widehat{KAC}=\widehat{KDB}\)
mà hai góc này ở vị trí so le trong nên \(AC//BD\).
mà tam giác \(ABC\)vuông tại \(A\)nên \(AB\perp AC\)
suy ra \(AB\perp BD\).
c) \(AD=KA+KD=KB+KC=BC\).