Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{ABC}=80^0\)
\(\widehat{ADB}=180^0-70^0-40^0=70^0\)
1) góc BDA+góc BDC=180độ(kề bù)
=> góc BDA=180độ-góc BDC
=180độ-105độ
=75độ
xét tam giác BAD vuông ở A
=> góc ABD+góc ADB=90độ
=> góc ABD=90độ-góc ADB
=90độ-75độ
=15độ
góc ABD+góc CBD=15độ+15độ=30độ(vì BD là p.giác của góc B)
xét tam giác ABC vuông ở A
=> góc B+góc C=90độ
=> góc C=90độ-30độ
=60độ
2) mh k chắc chắn lắm
xét tam giác BIC có góc IBC+góc BIC +góc ICB=180độ(tổng 3 góc trog 1 tam giác =180độ)
=> góc IBC+góc ICB=180độ-góc BIC
=180độ-130độ
=50độ
xét tam giác ABC có góc A+góc B+góc C=180độ(tổng 3 góc trog 1 tam giác =180độ)
=> góc A=180độ-(góc B+góc C)
=180độ-(2 góc IBC+2 góc ICB)
=180độ-\(\left[2.\left(gócIBC+gócICB\right)\right]\)
=180độ-\(\left[2.50^0\right]\)
=180độ-100độ
=80độ
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{C}+60^0=90^0\)
hay \(\widehat{C}=30^0\)
Vậy: \(\widehat{C}=30^0\)
a) Xét ΔABC có \(\widehat{C}< \widehat{B}< \widehat{A}\left(30^0< 60^0< 90^0\right)\)
mà cạnh đối diện với góc C là cạnh AB
và cạnh đối diện với góc B là cạnh AC
và cạnh đối diện với góc A là cạnh BC
nên AB<AC<BC(đpcm)
1)
góc BDA=180°-105°=75°
góc ABD= 90°-75°=15°
=> góc ABC=15°.2=30°
góc ACB=90°-30°=60°
2)
góc BIC=(180°- góc BAC)/2=130°
=> góc ABC=130°.2-180°=260-180°=80°
1/ góc BDC = 105* => góc ADB = 75* ( hai góc kề bù )
=> góc DBA = 90*-75*=15*
=> góc B = 2. góc DBA = 2. 15 = 30* ( phân giác BD)
=> góc C = 90* - 30*= 60*
Tam giác ABC có:
góc BAC + góc B + góc C = 180 độ
=> góc BAC + 80 độ + 30 độ = 180 độ
=> góc BAC = 180 độ - ( 80 độ + 30 độ) =70 độ
Vì AD là tia phân giác của góc BAC nên:
góc BAD = góc BAC / 2 = 70/2 = 35 độ
Vì góc ADC là góc ngoài của tam giác ADB nên:
góc ADC = góc B + góc BAD
= 80 độ + 35 độ =115 độ
Ta có: góc ADB + góc ADC = 180 độ ( kề bù)
=> góc ADB = 180 độ - góc ADC
= 180 độ - 115 độ = 65 độ
Vậy góc ADC = 115 độ, góc ADB = 65 độ
chúc em học tốt !
Ta có hình vẽ:
Ta có: ADC + ADB = 180o (kề bù)
=> ADC + 80o = 180o
=> ADC = 180o - 80o = 100o
Vì AD là phân giác của góc A nên \(CAD=DAB=\frac{CAB}{2}\)
Xét Δ ACD có: CAD + ADC + ACD = 180o
=> \(\frac{CAB}{2}\) + 100o + ACD = 180o
=> \(\frac{CAB}{2}\) + ACD = 180o - 100o = 80o (1)
Xét Δ ADB có: ADB + DAB + ABD = 180o
=> 80o + \(\frac{CAB}{2}\) + ABC = 180o
=> \(\frac{CAB}{2}\) + ABC = 180o - 80o = 100o (2)
Từ (1) và (2) \(\Rightarrow\left(\frac{CAB}{2}+ABC\right)-\left(\frac{CAB}{2}+ACD\right)=100^o-80^o\)
=> ABC - ACD = 20o
=> \(\frac{3}{2}ACD-ACD=20^o\)
\(\Rightarrow\frac{1}{2}ACD=20^o\Rightarrow ACD=20^o:\frac{1}{2}=40^o\)
=> ABC = 20o + 40o = 60o
Lại có: ABC + ACD + CAB = 180o
=> 60o + 40o + CAB = 180o
=> 100o + CAB = 180o
=> CAB = 180o - 100o = 80o
Vậy CAB = 80o; ABC = 60o; ACB = ACD = 40o
bạn làm đúng rồi đó