Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H M N
a, Xét tam giác ABC và tam giác HBA ta có :
^B _ chung
^BAC = ^BHA = 900
Vâỵ tam giác ABC ~ tam giác HBA ( g.g )
b, Xét tam giác AHB và tam giác CHA ta có :
^AHB = ^CHA = 900
^HBA = ^HAC ( cùng phụ ^BAH )
Vậy tam giác AHB ~ tam giác CHA ( g.g )
\(\Rightarrow\frac{AH}{CH}=\frac{HB}{AH}\Rightarrow AH^2=BH.CH\)
a)
Xét \(\Delta ABC\)và \(\Delta HBA\) có:
\(\widehat{A}=\widehat{H}=90^o\)
\(\widehat{B}\)là góc chung
\(\Rightarrow\Delta ABC\)đồng dạng với \(\Delta HBA\)
\(\RightarrowĐpcm\)
b)
Xét \(\Delta ABC\) và \(\Delta HAC\) có:
\(\widehat{A}=\widehat{H}=90^o\)
\(\widehat{C}\)là góc chung
\(\Rightarrow\Delta ABC\)đồng dạng với \(\Delta HAC\)
\(\Rightarrow\Delta HBA\)đồng dạng với \(\Delta HAC\) (bắc cầu)
Vì \(\Delta HBA\)đồng dạng với \(\Delta HAC\)
\(\Rightarrow\frac{AH}{HC}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC\Rightarrowđpcm\)
ta có: góc BAH + góc HAC = 90 độ
góc HCA + góc HAC = 90 độ
=> góc BAH = HCA
xét Tg ABH và Tg CAH
góc BHA = AHC = 90
góc BAH = HCA (cmt)
=> Tg ABH đồng dạng với Tg CAH (g.g)
=> BH/AH = AH/CH
nhân chéo => AH2 = BH.CH
Câu 1:
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc BAD chung
DO đo: ΔADB đồng dạng với ΔAEC
Suy ra: AD/AE=AB/AC
hay AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
Do đó: ΔADE đồng dạng với ΔABC
Suy ra: DE/BC=AD/AB
hay \(DE\cdot AB=AD\cdot BC\)
c: Xét ΔOBE và ΔODC có
góc OBE=góc ODC
góc BOE chung
Do đo: ΔOBE đồng dạng với ΔODC
Suy ra: OB/OD=OE/OC
hay \(OB\cdot OC=OE\cdot OD\)
a) xét tam giác ABH vuông tại h tam giác AHC vuông tại a ta có
ah là cạnh chung
=)tam giác ABC đồng dạng tam giác ABH
b)VÌ tsm giác ABH đồng dạng tam giác ABC
ah/hb=hc/ah
=)ah^2=hb*hc