Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, Ta có : \(AF.AB=AE.AC\) ( theo câu a)
\(\Rightarrow\dfrac{AB}{AE}=\dfrac{AC}{AF}\)
Xét ΔABC và ΔAEF ,có :
\(\widehat{A}\) : góc chung
\(\dfrac{AB}{AE}=\dfrac{AC}{AF}\) ( c/m t)
⇒ ΔABC ∼ ΔAEF ( cgc )
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F cóc
góc EAB chung
Do đó:ΔAEB\(\sim\)ΔAFC
Suy ra: AE/AF=AB/AC
hay \(AE\cdot AC=AF\cdot AB\)
b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
góc HBD chung
Do đó:ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC
hay \(BD\cdot BC=BH\cdot BE\)
a) Xét tam giác ABE và tam giác AFC có :
^AEB = ^AFC =90*
^A chung
=> tam giác AEB ~ tam giác AFC (g.g)
b) Từ tam giác ABE ~ tam giác AFC (cma )
=> AF /AE = AC / AB
=> AF.AB=AE.AC (đpcm)
c) Từ AF/AE= AC/AB (cmb )
=> AF/AE=AC/AB
Xét tam giác ABC và tam giác AFE có
^A chung
AF/AE=AC/AB (cmt)
=> tg ABC = tg AFE ( c.g.c )
Hình như câu (a) b đọc sai đỉnh rồi thỳ phải
Mk làm nếu có sai thỳ xl nha !!!