K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\widehat{ABE}=\dfrac{\widehat{ABC}}{2}\)(BE là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACF}=\dfrac{\widehat{ACB}}{2}\)(CF là tia phân giác của \(\widehat{ACB}\))

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABE}=\widehat{ACF}\)

Xét ΔABE và ΔACF có 

\(\widehat{ABE}=\widehat{ACF}\)(cmt)

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF(g-c-g)

Suy ra: BE=CF(Hai cạnh tương ứng)

c) Xét ΔABC có 

BE là đường phân giác ứng với cạnh AC(gt)

CF là đường phân giác ứng với cạnh AB(gt)

BE cắt CF tại D(gt)

Do đó: D là tâm đường tròn nội tiếp ΔABC(Định lí ba đường phân giác)

Suy ra: D cách đều ba cạnh của tam giác ABC

hay DM=DK=DN(Đpcm)