Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mọi người giúp mình với nha
mình cảm ơn các bạn nhiều>-<
ĐK: \(x\ge0\)
\(P=x+a+b+\frac{ab}{x}=\left(x+\frac{ab}{x}\right)+a+b\)
Áp dụng BĐT cosi cho 2 số dương x, ab/x ta có:
\(x+\frac{ab}{x}\ge2\sqrt{ab}\)
=> \(P\ge2\sqrt{ab}+a+b\)
Dấu "=" xảy ra <=> \(x=\frac{ab}{x}\Leftrightarrow x^2=ab\Leftrightarrow x=\sqrt{ab}\)( vì x dương)
a2(b+c)2+5bc+b2(a+c)2+5ac≥4a29(b+c)2+4b29(a+c)2=49(a2(1−a)2+b2(1−b)2)(vì a+b+c=1)
a2(1−a)2−9a−24=(2−x)(3x−1)24(1−a)2≥0(vì )<a<1)
⇒a2(1−a)2≥9a−24
tương tự: b2(1−b)2≥9b−24
⇒P⩾49(9a−24+9b−24)−3(a+b)24=(a+b)−94−3(a+b)24.
đặt t=a+b(0<t<1)⇒P≥F(t)=−3t24+t−94(∗)
Xét hàm (∗) được: MinF(t)=F(23)=−19
⇒MinP=MinF(t)=−19.dấu "=" xảy ra khi a=b=c=13
\(\frac{a}{b^2+c^2}=\frac{a}{1-a^2}=\frac{a^2}{a-a^3}\)
Chứng minh: \(a-a^3\le\frac{2}{3\sqrt{3}}\text{ }\left(#\right)\)
\(\left(#\right)\Leftrightarrow a^3-a+\frac{2}{3\sqrt{3}}\ge0\Leftrightarrow\left(a-\frac{1}{\sqrt{3}}\right)^2\left(x+\frac{2}{\sqrt{3}}\right)\ge0\)
Bất đẳng thức cuối đúng nên có đpcm.
\(\Rightarrow P\ge\frac{1}{\frac{2}{3\sqrt{3}}}\left(a^2+b^2+c^2\right)=\frac{3\sqrt{3}}{2}\)
\(1>=\left(x+y\right)^2>=\left(2\sqrt{xy}\right)^2=4xy\Rightarrow1>=4xy\Rightarrow\frac{1}{2}>=2xy\)(bđt cosi)
\(\Rightarrow\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}>=\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{1}{2}}\)
\(=\frac{4}{\left(x+y\right)^2}+2>=\frac{4}{1^2}+2=4+2=6\)
dấu = xảy ra khi \(x=y=\frac{1}{2}\)
vậy min \(\frac{1}{x^2+y^2}+\frac{1}{xy}=6\)khi \(x=y=\frac{1}{2}\)
Ta dễ có:
\(2+4ab=\left(a+b\right)^2+a+b\ge4ab+a+b\Rightarrow a+b\le2\)
\(P=\frac{a^2-2a+2}{b+1}+\frac{b^2-2b+2}{a+1}\)
\(=\frac{\left(a-1\right)^2}{b+1}+\frac{\left(b-1\right)^2}{a+1}+\frac{1}{a+1}+\frac{1}{b+1}\)
\(\ge\frac{\left(a+b-2\right)^2}{a+b+2}+\frac{4}{a+b+2}\ge\frac{\left(a+b-2\right)^2}{a+b+2}+1\ge1\)
Đẳng thức xảy ra tại \(a=b=1\)
hmm check hộ mình nhá
Vì số trang của mỗi quyển vỡ loại 2 bằng 2/3 số trang của 1 quyển loại 1. Nên số trang của 3 quyển loại 2 bằng số trang của 2 quyển loại 1
Mà số trang của 4 quyển loại 3 bằng 3 quyển loại 2.
Nê số trang của 2 quyển loại 1 bằng số trang của 4 quyển loại 3
Do đó số trang của 8 quyển loại 1 bằng : 4 .8 : 2 = 16 ( quyển loại 3)
Số trang của 9 quyển loại 2 bằng 9 .4 : 3 = 12 (quỷên loại 3)
Vậy 1980 chính là số trang của 16 + 12+ 5 = 33(quyển loại 3)
Suy ra: Số trang 1 quyển vở loại 3 là 1980 : 33 = 60 ( trang)
Số trang 1 quyển vở loại 2 là 80 (trang)