\(\dfrac{3\sin a-2\cos a}{12\sin^3a+4\cos^3a}\) có giá trị bằng ? ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2021

\(cot\alpha=3\Leftrightarrow\dfrac{cos\alpha}{sin\alpha}=3\Leftrightarrow cos\alpha=3sin\alpha\)

Khi đó: 

\(\dfrac{3sin\alpha-2cos\alpha}{12sin^3\alpha+4cos^3\alpha}=\dfrac{3sin\alpha-6sin\alpha}{12sin^3\alpha+108sin^3\alpha}=-\dfrac{3sin\alpha}{120sin^3\alpha}=-\dfrac{1}{40sin^2\alpha}\)

NV
28 tháng 11 2019

\(\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina\left(1+sina\right)}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)

\(\frac{sin^2a+cos^2a+2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina+cosa}{sina-cosa}=\frac{\frac{sina}{cosa}+1}{\frac{sina}{cosa}-1}=\frac{tana+1}{tana-1}\)

\(\left(sin^2a\right)^3+\left(cos^2a\right)^3=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)

\(=1-3sin^2a.cos^2a\)

\(sin^2a-tan^2a=tan^4a\left(\frac{sin^2a}{tan^4a}-\frac{1}{tan^2a}\right)=tan^4a\left(sin^2a.\frac{cos^2a}{sin^2a}-\frac{1}{tan^2a}\right)\)

\(=tan^4a\left(cos^2a-cot^2a\right)\) bạn ghi sai đề câu này

\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a\left(1+cot^2a\right)-\frac{1}{sina.cosa}+cot^3a\left(1+tan^2a\right)\)

\(=tan^3a+tana-\frac{1}{sina.cosa}+cot^3a+cota\)

\(=tan^3a+cot^3a+\frac{sina}{cosa}+\frac{cosa}{sina}-\frac{1}{sina.cosa}\)

\(=tan^3a+cot^3a+\frac{sin^2a+cos^2a-1}{sina.cosa}=tan^3a+cot^3a\)

30 tháng 3 2017

Chia tử và mẫu cho cosa ta có:

B=\(\dfrac{4\tan a+5}{2\tan a-3}\). Vì \(\cot a=\dfrac{1}{2}\) nên \(\tan a=2\)

=> B=13

30 tháng 3 2017

chia tử và mẫu của B cho sina khác 0\(B=\dfrac{4\dfrac{sina}{sina}+5\dfrac{cosa}{sina}}{2\dfrac{sina}{sina}-3\dfrac{cosa}{sina}}=\dfrac{4+5cota}{2-3cota}=\dfrac{4+5\dfrac{1}{2}}{2-3\dfrac{1}{2}}=13\)

vay B = 13

AH
Akai Haruma
Giáo viên
1 tháng 10 2018

a)

\(\sin ^4a-\cos ^4a+1=(\sin ^2a-\cos ^2a)(\sin ^2a+\cos^2a)+1\)

\(=(\sin ^2a-\cos ^2a).1+1=\sin ^2a-\cos ^2a+\sin ^2a+\cos ^2a\)

\(=2\sin ^2a\)

b) \(\sin ^2a+2\cos ^2a-1=(\sin ^2a+\cos^2a)+\cos ^2a-1\)

\(=1+\cos ^2a-1=\cos ^2a\)

\(\Rightarrow \frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{\frac{\cos ^2a}{\sin ^2a}}=\sin ^2a\)

c)

\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)

\(=\frac{1}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\frac{1}{\cos ^2a}-1\)

\(=\frac{1-\cos ^2a}{\cos ^2a}=\frac{\sin ^2a}{\cos ^2a}=\tan ^2a\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2018

d)

\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}\) \(=\frac{\sin ^2a(1-\frac{1}{\cos ^2a})}{\cos ^2a(1-\frac{1}{\sin ^2a})}\)

\(=\frac{\sin ^2a.\frac{\cos ^2a-1}{\cos ^2a}}{\cos ^2a.\frac{\sin ^2a-1}{\sin ^2a}}\) \(=\frac{\sin ^2a.\frac{-\sin ^2a}{\cos ^2a}}{\cos ^2a.\frac{-\cos ^2a}{\sin ^2a}}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)

f)

\(\frac{(\sin a+\cos a)^2-1}{\cot a-\sin a\cos a}=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\frac{\cos a}{\sin a}-\sin a\cos a}\)

\(=\sin a.\frac{1+2\sin a\cos a-1}{\cos a-\cos a\sin ^2a}\)

\(=\sin a. \frac{2\sin a\cos a}{\cos a(1-\sin ^2a)}=\sin a. \frac{2\sin a\cos a}{\cos a. \cos^2 a}=\frac{2\sin ^2a}{\cos ^2a}=2\tan ^2a\)

30 tháng 3 2017

\(C=\dfrac{\sin a}{\sin^3a+2\cos^3a}=\dfrac{\dfrac{1}{\cos^2a}\cdot\tan a}{\tan^3a+2}=\dfrac{\left(1+\tan^2a\right)\cdot\tan a}{2+\tan^3a}=\dfrac{\left(1+2^2\right)\cdot2}{2+8}=1\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2018

Lời giải:

Ta có:

\(P=\frac{2\sin \alpha+3\cos \alpha}{4\sin \alpha-5\cos \alpha}=\frac{2+\frac{3\cos \alpha}{\sin \alpha}}{4-\frac{5\cos \alpha}{\sin \alpha}}\)

\(=\frac{2+3\cot \alpha}{4-5\cot\alpha}=\frac{2+3.3}{4-5.3}=-1\)

AH
Akai Haruma
Giáo viên
25 tháng 4 2018

Câu a)

Từ \(\tan a=3\Leftrightarrow \frac{\sin a}{\cos a}=3\Rightarrow \sin a=3\cos a\)

Do đó:

\(\frac{\sin a\cos a+\cos ^2a}{2\sin ^2a-\cos ^2a}=\frac{3\cos a\cos a+\cos ^2a}{2(3\cos a)^2-\cos ^2a}\)

\(=\frac{\cos ^2a(3+1)}{\cos ^2a(18-1)}=\frac{4}{17}\)

Câu b)

Có: \(\cot \left(\frac{\pi}{2}-x\right)=\tan x=\frac{\sin x}{\cos x}\)

\(\cos\left(\frac{\pi}{2}+x\right)=-\sin x\)

\(\Rightarrow \cot \left(\frac{\pi}{2}-x\right)\cos \left(\frac{\pi}{2}+x\right)=\frac{-\sin ^2x}{\cos x}\)

Và:

\(\frac{\sin (\pi-x)\cot x}{1-\sin ^2x}=\frac{\sin x\cot x}{\cos^2x}=\frac{\sin x.\frac{\cos x}{\sin x}}{\cos^2x}=\frac{1}{\cos x}\)

Do đó:

\(\Rightarrow \cot \left(\frac{\pi}{2}-x\right)\cos \left(\frac{\pi}{2}+x\right)+\frac{\sin (\pi-x)\cot x}{1-\sin ^2x}=\frac{1-\sin ^2x}{\cos x}=\frac{\cos ^2x}{\cos x}=\cos x\)

Ta có đpcm.

25 tháng 5 2020

mình cám ơn ạ^^

NV
25 tháng 5 2020

\(\frac{sin2a-2sina}{sin2a+2sina}=\frac{2sina.cosa-2sina}{2sina.cosa+2sina}=\frac{2sina\left(cosa-1\right)}{2sina\left(cosa+1\right)}=\frac{cosa-1}{cosa+1}\)

\(=\frac{1-2sin^2\frac{a}{2}-1}{2cos^2\frac{a}{2}-1+1}=\frac{-sin^2\frac{a}{2}}{cos^2\frac{a}{2}}=-tan^2\frac{a}{2}\)

\(\frac{sin^4x-sin^2x+cos^2x}{cos^4x-cos^2x+sin^2x}=\frac{sin^2x\left(sin^2x-1\right)+cos^2x}{cos^2x\left(cos^2x-1\right)+sin^2x}=\frac{-sin^2x.cos^2x+cos^2x}{-cos^2x.sin^2x+sin^2x}\)

\(=\frac{cos^2x\left(1-sin^2x\right)}{sin^2x\left(1-cos^2x\right)}=\frac{cos^4x}{sin^4x}=cot^4x\)

\(\frac{sin^3a-cos^3a}{sina-cosa}=\frac{\left(sina-cosa\right)\left[sin^2a+cos^2a+sina.cosa\right]}{sina-cosa}=1+sina.cosa=1+\frac{1}{2}sin2a\)

26 tháng 4 2017

Giải bài 4 trang 154 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 4 trang 154 SGK Đại Số 10 | Giải toán lớp 10

20 tháng 11 2022

\(tana=\sqrt{3}\)

nên \(\dfrac{sina}{cosa}=\sqrt{3}\)

=>\(sina=\sqrt{3}\cdot cosa\)

=>a=60 độ

\(A=\dfrac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina\cdot cosa\right)}{sina-cosa}\)

\(=1+sina\cdot cosa=1+\dfrac{1}{2}sin2a\)

\(=1+\dfrac{1}{2}\cdot sin120=\dfrac{4+\sqrt{3}}{4}\)