Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3/2-5/6+/12-9/20+11/30-13/42+15/56-17/72+19/90
A=11/10
hok tốt nha
Có \(P=\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}\times...\times\frac{399}{400}< \frac{2}{3}\times\frac{4}{5}\times...\times\frac{400}{401}\)
=> \(P^2< \frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{400}{401}=\frac{1}{401}< \frac{1}{400}=\frac{1}{20}\)
=> \(P< \frac{1}{20}\)(đpcm).
\(A=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+8}\)
= \(\frac{1}{\frac{1.2}{2}}+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{8.9}{2}}\)
= \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)=2\left(1-\frac{1}{9}\right)=2.\frac{8}{9}=\frac{16}{9}\)
\(A=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+8}\)
\(A=\frac{1}{\frac{1.2}{2}}+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{8.9}{2}}\)
\(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\right)\)
\(A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)\)
\(A=2\left(1-\frac{1}{9}\right)=2.\frac{8}{9}=\frac{16}{9}\)
\(\text{Vậy A }=\frac{16}{9}\)
\(\text{#Hok tốt!}\)
a)121212/424242=2/7
1999999999/9999999995=1/5
Sorry bạn mik chỉ bt làm câu a thôi!
HT~
Câu b:
\(\frac{a}{b}:\frac{c}{d}=\frac{ad}{bc}=\frac{6}{5}\Leftrightarrow5ad=6bc\)
\(\frac{a}{b}-\frac{c}{d}=\frac{ad-bc}{bd}=\frac{1}{15}\Leftrightarrow5\left(ad-bc\right)=\frac{bd}{3}\)
\(\Rightarrow5ad-5bc=\frac{bd}{3}\)
Thay vào ta có:
\(\frac{a}{b}-\frac{c}{d}=\frac{a}{b}-\frac{1}{3}=\frac{1}{15}\Leftrightarrow\frac{a}{b}=-\frac{4}{15}\)
Câu 1:
Ta có: \(A=\frac{12n+1}{2n+3}=\frac{\left(12n+18\right)-17}{2n+3}=6-\frac{17}{2n+3}\)
Để A là một số nguyên thì \(2n+3\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
\(\Leftrightarrow2n\in\left\{-20;-4;-2;14\right\}\Rightarrow n\in\left\{-10;-2;-1;7\right\}\)
Để A là một phân số thì \(n\notin\left\{-10;-2;-1;7;-\frac{3}{2}\right\}\)
Vậy ...