Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, sửa đề : \(C=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}+\frac{1}{2-x}\)ĐK : \(x\ne-3;2\)
\(=\frac{\left(x+2\right)\left(x-2\right)-5-x-3}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-12-x}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)
b, Ta có : \(x^2-x=2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\Leftrightarrow x=-1;x=2\)
Kết hợp với giả thiết vậy x = -1
Thay x = -1 vào biểu thức C ta được : \(\frac{-1-4}{-1-2}=-\frac{5}{-3}=\frac{5}{3}\)
c, Ta có : \(C=\frac{1}{2}\Rightarrow\frac{x-4}{x-2}=\frac{1}{2}\Rightarrow2x-8=x-2\Leftrightarrow x=6\)( tm )
d, \(C>1\Rightarrow\frac{x-4}{x-2}>1\Rightarrow\frac{x-4}{x-2}-1>0\Leftrightarrow\frac{x-4-x+2}{x-2}>0\Leftrightarrow\frac{-2}{x-2}>0\)
\(\Rightarrow x-2< 0\Leftrightarrow x< 2\)vì -2 < 0
e, tự làm nhéee
f, \(C< 0\Rightarrow\frac{x+4}{x+2}< 0\)
mà x + 4 > x + 2
\(\hept{\begin{cases}x+4>0\\x+2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-4\\x< -2\end{cases}\Leftrightarrow-4< x< -2}}\)
Vì \(x\inℤ\Rightarrow x=-3\)( ktmđk )
Vậy ko có x nguyên để C < 0
g, Ta có : \(\frac{x+4}{x+2}=\frac{x+2+2}{x+2}=1+\frac{2}{x+2}\)
Để C nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x + 2 | 1 | -1 | 2 | -2 |
x | -1 | -3 | 0 | -4 |
h, Ta có : \(D=C\left(x^2-4\right)=\frac{x+4}{x+2}.\frac{\left(x-2\right)\left(x+2\right)}{1}=x^2+2x-8\)
\(=\left(x+1\right)^2-9\ge-9\)
Dấu ''='' xảy ra khi x = -1
Vậy GTNN D là -9 khi x = -1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(e ) Để \) \(M\)\(\in\)\(Z \) \(thì\) \(1 \)\(⋮\)\(x +3\)
\(\Leftrightarrow\)\(x + 3 \)\(\in\)\(Ư\)\((1)\)\(= \) { \(\pm\)\(1 \) }
\(Lập\) \(bảng :\)
\(x +3\) | \(1\) | \(- 1\) |
\(x\) | \(-2\) | \(- 4\) |
\(Vậy : Để \) \(M\)\(\in\)\(Z\) \(thì\) \(x\)\(\in\){ \(- 4 ; - 2\) }
e) Để M \(\in\)Z <=> \(\frac{1}{x+3}\in Z\)
<=> 1 \(⋮\)x + 3 <=> x + 3 \(\in\)Ư(1) = {1; -1}
Lập bảng:
x + 3 | 1 | -1 |
x | -2 | -4 |
Vậy ....
f) Ta có: M > 0
=> \(\frac{1}{x+3}\) > 0
Do 1 > 0 => x + 3 > 0
=> x > -3
Vậy để M > 0 khi x > -3 ; x \(\ne\)3 và x \(\ne\)-3/2
![](https://rs.olm.vn/images/avt/0.png?1311)
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)
\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)
Cộng vế với vế ta được :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)
Vậy ta có điều phải chứng mình
Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *
Khi đó:
\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)
Tương tự:
\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)
\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
I don't now
...............
.................
![](https://rs.olm.vn/images/avt/0.png?1311)
easy !
Áp dụng bđt cauchy schwarz dạng engel :
\(VT=\frac{1^2}{a}+\frac{1^2}{b}+\frac{1^2}{c}\ge\frac{3^2}{1}=9\)
dấu = xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
Có thưởng thì thưởng số chẵn a nhé :)) ko thích 1001 đâu !
Bài 1 :
a, \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+d\right)\)
\(=x-2x^2+2x^2-x+d=d\)
Đặt \(f\left(x\right)=0\)hay \(d=0\)
Vậy phươnng trình có nghiệm là d = 0 (đề có j sai ko nhỉ?)
b, \(g\left(x\right)=x\left(x-1\right)+1=x^2-x+1\)
Ta có : \(\left(-1\right)^2-4=1-4< 0\)Vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\frac{x-4}{x^2+x-12}=\frac{x-4}{x^2+4x-3x-12}=\frac{x-4}{\left(x-3\right)\left(x+4\right)}\)
ĐKXĐ: \(\left(x-3\right)\left(x+4\right)\ne0\) => \(\hept{\begin{cases}x-3\ne0\\x+4\ne0\end{cases}}\)=> \(\hept{\begin{cases}x\ne3\\x\ne-4\end{cases}}\)
a, x2 - 3x = 0
=> x(x - 3) = 0
=> \(\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Mà \(\hept{\begin{cases}x\ne3\\x\ne-4\end{cases}}\)
=> x = 0
=> \(P=\frac{0-4}{\left(0-3\right)\left(0+4\right)}=\frac{-4}{\left(-3\right).4}=\frac{1}{3}\)
b, Với \(\hept{\begin{cases}x\ne3\\x\ne-4\end{cases}}\)
\(P.\left(x+4\right)=\frac{2}{3}\)
=> \(\frac{x-4}{\left(x-3\right)\left(x+4\right)}.\left(x+4\right)=\frac{2}{3}\)
=> \(\frac{x-4}{x-3}=\frac{2}{3}\)
=> \(2\left(x-3\right)=3\left(x-4\right)\)
=> 2x - 6 = 3x - 12
=> -x = -6
=> x = 6 (TM ĐKXĐ)
c, Với \(\hept{\begin{cases}x\ne3\\x\ne-4\end{cases}}\)
\(P\left(x-3\right)\)có giá trị nguyên
=> \(\frac{x-4}{\left(x-3\right)\left(x+4\right)}.\left(x-3\right)\)nguyên
=> \(\frac{x-4}{x+4}\)nguyên
=> x - 4 chia hết cho x + 4
<=> x + 4 - 8 chia hết cho x + 4
Có x + 4 chia hết cho x + 4
=> 8 chia hết cho x + 4
=> x + 4 thuộc Ư(8)
=> x + 4 thuộc {1; -1; 2; -2; 4; -4; 8; -8}
=> x thuộc {-3; -5; -2; -6; 0; -8; 4; -12}
\(\hept{\begin{cases}-10x>12\\\orbr{\begin{cases}\hept{\begin{cases}x-3>0\\x+3>0\end{cases}}\\\hept{\begin{cases}x-3< 0\\x+3< 0\end{cases}}\end{cases}}\end{cases}}\)
ĐKXĐ:X khác 3;x khác -3
a)Để C > 0 <=>-10x-12 và (x-3)(x+3) cùng dấu
TH1\(\hept{\begin{cases}-10x-12>0\\\left(x-3\right)\left(x+3\right)>0\end{cases}}\)<=>\(\hept{\begin{cases}-10x>12\\chia2TH\end{cases}}\)<=>\(\hept{\begin{cases}x< -1,2\left(1\right)\\chia2TH\left(#\right)\end{cases}}\)
2TH của (#)
TH (#1) :\(\hept{\begin{cases}x-3>0\\x+3>0\end{cases}}\)<=>\(\hept{\begin{cases}x>3\\x>-3\end{cases}}\)=> x>3 (2)
TH (#2) :\(\hept{\begin{cases}x-3< 0\\x+3< 0\end{cases}}\)<=>\(\hept{\begin{cases}x< 3\\x< -3\end{cases}}\)=> x<-3 (3)
Từ (1),(2) suy ra \(\hept{\begin{cases}x< -1,2\\x>3\end{cases}}\left(loai\right)\)
Từ (1),(3) suy ra x<-3
TH2:\(\hept{\begin{cases}-10x-12< 0\\\left(x-3\right)\left(x+3\right)< 0\end{cases}}\)<=>\(\hept{\begin{cases}-10x< 12\\chia2TH\end{cases}}\)<=>\(\hept{\begin{cases}x>-1,2\left(4\right)\\chia2TH\left(@\right)\end{cases}}\)
2TH của (@)
TH (@1):\(\hept{\begin{cases}x-3>0\\x+3< 0\end{cases}}\)<=>\(\hept{\begin{cases}x>3\\x< -3\end{cases}}loai\)
TH (@2):\(\hept{\begin{cases}x-3< 0\\x+3>0\end{cases}}\)<=>\(\hept{\begin{cases}x< 3\\x>-3\end{cases}}\)=>-3<x<3 (5)
Từ (4),(5) suy ra -1,2<x<3
Vậy để C > 0 thì x<-3 hoặc -1,2<x<3