\(C=\frac{-10x-12}{\left(x-3\right)\left(x+3\right)}\)

a, Tìm x để C > 0

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2019

\(\hept{\begin{cases}-10x>12\\\orbr{\begin{cases}\hept{\begin{cases}x-3>0\\x+3>0\end{cases}}\\\hept{\begin{cases}x-3< 0\\x+3< 0\end{cases}}\end{cases}}\end{cases}}\)

30 tháng 7 2019

ĐKXĐ:X khác 3;x khác -3

a)Để C > 0 <=>-10x-12 và (x-3)(x+3) cùng dấu

TH1\(\hept{\begin{cases}-10x-12>0\\\left(x-3\right)\left(x+3\right)>0\end{cases}}\)<=>\(\hept{\begin{cases}-10x>12\\chia2TH\end{cases}}\)<=>\(\hept{\begin{cases}x< -1,2\left(1\right)\\chia2TH\left(#\right)\end{cases}}\)

2TH của (#)

TH (#1) :\(\hept{\begin{cases}x-3>0\\x+3>0\end{cases}}\)<=>\(\hept{\begin{cases}x>3\\x>-3\end{cases}}\)=> x>3 (2)

TH (#2) :\(\hept{\begin{cases}x-3< 0\\x+3< 0\end{cases}}\)<=>\(\hept{\begin{cases}x< 3\\x< -3\end{cases}}\)=> x<-3 (3)

Từ (1),(2) suy ra \(\hept{\begin{cases}x< -1,2\\x>3\end{cases}}\left(loai\right)\)

Từ (1),(3) suy ra x<-3

TH2:\(\hept{\begin{cases}-10x-12< 0\\\left(x-3\right)\left(x+3\right)< 0\end{cases}}\)<=>\(\hept{\begin{cases}-10x< 12\\chia2TH\end{cases}}\)<=>\(\hept{\begin{cases}x>-1,2\left(4\right)\\chia2TH\left(@\right)\end{cases}}\)

2TH của (@)

TH (@1):\(\hept{\begin{cases}x-3>0\\x+3< 0\end{cases}}\)<=>\(\hept{\begin{cases}x>3\\x< -3\end{cases}}loai\)

TH (@2):\(\hept{\begin{cases}x-3< 0\\x+3>0\end{cases}}\)<=>\(\hept{\begin{cases}x< 3\\x>-3\end{cases}}\)=>-3<x<3  (5)

Từ (4),(5) suy ra -1,2<x<3

Vậy để C > 0 thì x<-3 hoặc -1,2<x<3

21 tháng 6 2021

a, sửa đề : \(C=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}+\frac{1}{2-x}\)ĐK : \(x\ne-3;2\)

\(=\frac{\left(x+2\right)\left(x-2\right)-5-x-3}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-12-x}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)

b, Ta có : \(x^2-x=2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\Leftrightarrow x=-1;x=2\)

Kết hợp với giả thiết vậy x = -1 

Thay x = -1 vào biểu thức C ta được : \(\frac{-1-4}{-1-2}=-\frac{5}{-3}=\frac{5}{3}\)

c, Ta có : \(C=\frac{1}{2}\Rightarrow\frac{x-4}{x-2}=\frac{1}{2}\Rightarrow2x-8=x-2\Leftrightarrow x=6\)( tm )

d, \(C>1\Rightarrow\frac{x-4}{x-2}>1\Rightarrow\frac{x-4}{x-2}-1>0\Leftrightarrow\frac{x-4-x+2}{x-2}>0\Leftrightarrow\frac{-2}{x-2}>0\)

\(\Rightarrow x-2< 0\Leftrightarrow x< 2\)vì -2 < 0 

21 tháng 6 2021

e, tự làm nhéee 

f, \(C< 0\Rightarrow\frac{x+4}{x+2}< 0\)

mà x + 4 > x + 2 

\(\hept{\begin{cases}x+4>0\\x+2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-4\\x< -2\end{cases}\Leftrightarrow-4< x< -2}}\)

Vì \(x\inℤ\Rightarrow x=-3\)( ktmđk )

Vậy ko có x nguyên để C < 0 

g, Ta có :  \(\frac{x+4}{x+2}=\frac{x+2+2}{x+2}=1+\frac{2}{x+2}\)

Để C nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x + 21-12-2
x-1-30-4

h, Ta có : \(D=C\left(x^2-4\right)=\frac{x+4}{x+2}.\frac{\left(x-2\right)\left(x+2\right)}{1}=x^2+2x-8\)

\(=\left(x+1\right)^2-9\ge-9\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTNN D là -9 khi x = -1 

30 tháng 12 2019

\(e ) Để \)  \(M\)\(\in\)\(Z \)  \(thì\) \(1 \)\(⋮\)\(x +3\)

\(\Leftrightarrow\)\(x + 3 \)\(\in\)\(Ư\)\((1)\)\(= \) { \(\pm\)\(1 \) }

\(Lập\)  \(bảng :\)

\(x +3\)\(1\)\(- 1\)
\(x\)\(-2\)\(- 4\)

\(Vậy : Để \)  \(M\)\(\in\)\(Z\)  \(thì\) \(x\)\(\in\)\(- 4 ; - 2\) }

30 tháng 12 2019

e) Để M \(\in\)Z <=> \(\frac{1}{x+3}\in Z\)

<=> 1 \(⋮\)x + 3 <=> x + 3 \(\in\)Ư(1) = {1; -1}

Lập bảng: 

x + 31-1
  x-2-4

Vậy ....

f) Ta có: M > 0

=> \(\frac{1}{x+3}\) > 0

Do 1 > 0 => x + 3 > 0

=> x > -3

Vậy để M > 0 khi x > -3 ; x \(\ne\)3 và x \(\ne\)-3/2

16 tháng 3 2020

câu 1

a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)

b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)

Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được

\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)

16 tháng 3 2020

c) Để phân thức trên có giá trị nguyên thì :

\(3⋮x-2\)

=>\(x-2\inƯ\left(3\right)=\left(\pm1\pm3\right)\)

=>\(x\in\left\{1,3,-1,5\right\}\)

zậy ....

5 tháng 7 2020

Áp dụng bđt Cauchy cho 2 số không âm :

\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)

\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)

Cộng vế với vế ta được :

\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)

Vậy ta có điều phải chứng mình 

5 tháng 7 2020

Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *

Khi đó:

\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)

Tương tự:

\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)

\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)

I don't now

...............

.................

4 tháng 7 2020

easy !

Áp dụng bđt cauchy schwarz dạng engel :

\(VT=\frac{1^2}{a}+\frac{1^2}{b}+\frac{1^2}{c}\ge\frac{3^2}{1}=9\)

dấu = xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

Có thưởng thì thưởng số chẵn a nhé :)) ko thích 1001 đâu !

Bài 1 : 

a, \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+d\right)\)

\(=x-2x^2+2x^2-x+d=d\)

Đặt \(f\left(x\right)=0\)hay \(d=0\)

Vậy phươnng trình có nghiệm là d = 0 (đề có j sai ko nhỉ?)

b, \(g\left(x\right)=x\left(x-1\right)+1=x^2-x+1\)

Ta có : \(\left(-1\right)^2-4=1-4< 0\)Vô nghiệm 

1 tháng 1 2017

\(P=\frac{x-4}{x^2+x-12}=\frac{x-4}{x^2+4x-3x-12}=\frac{x-4}{\left(x-3\right)\left(x+4\right)}\)

ĐKXĐ: \(\left(x-3\right)\left(x+4\right)\ne0\) =>  \(\hept{\begin{cases}x-3\ne0\\x+4\ne0\end{cases}}\)=> \(\hept{\begin{cases}x\ne3\\x\ne-4\end{cases}}\)

a, x2 - 3x = 0

=> x(x - 3) = 0

=> \(\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Mà \(\hept{\begin{cases}x\ne3\\x\ne-4\end{cases}}\)

=> x = 0

=> \(P=\frac{0-4}{\left(0-3\right)\left(0+4\right)}=\frac{-4}{\left(-3\right).4}=\frac{1}{3}\)

b, Với \(\hept{\begin{cases}x\ne3\\x\ne-4\end{cases}}\)

\(P.\left(x+4\right)=\frac{2}{3}\)

=> \(\frac{x-4}{\left(x-3\right)\left(x+4\right)}.\left(x+4\right)=\frac{2}{3}\)

=> \(\frac{x-4}{x-3}=\frac{2}{3}\)

=> \(2\left(x-3\right)=3\left(x-4\right)\)

=> 2x - 6 = 3x  - 12

=> -x = -6

=> x = 6 (TM ĐKXĐ)

c, Với \(\hept{\begin{cases}x\ne3\\x\ne-4\end{cases}}\)

\(P\left(x-3\right)\)có giá trị nguyên

=> \(\frac{x-4}{\left(x-3\right)\left(x+4\right)}.\left(x-3\right)\)nguyên

=> \(\frac{x-4}{x+4}\)nguyên

=> x - 4 chia hết cho x + 4

<=> x + 4 - 8 chia hết cho x + 4

Có x + 4 chia hết cho x + 4

=> 8 chia hết cho x + 4

=> x + 4 thuộc Ư(8)

=> x + 4 thuộc {1; -1; 2; -2; 4; -4; 8; -8}

=> x thuộc {-3; -5; -2; -6; 0; -8; 4; -12}