K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

17 tháng 2 2016

Bài 2:

a) Ta có:

\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)

\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)

Vậy \(S\) \(\text{⋮}\) \(-20\)

17 tháng 2 2016

Bài 1:

Ta có:

\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)

\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)

\(=\left(-12\right).m^2.3.n^3\)

\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)

Xét: \(m^2\ge0\) với V m

3>0 nên \(m^2.3\ge0\) với V m

Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)

-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)

Vậy với n<0 và mọi m thì \(A\ge0\)

 

17 tháng 2 2017

Chọn đáp án D.

AH
Akai Haruma
Giáo viên
8 tháng 1 2017

Lời giải:

\(A=a_1a_2+a_2a_3+....+a_{n-1}a_n+a_na_1=0\)

Nếu $n$ lẻ, ta thấy tổng $A$ gồm lẻ số hạng, mỗi số hạng có giá trị $1$ hoặc $-1$ nên $A$ lẻ \(\Rightarrow A\neq 0\) (vô lý)

Do đó $n$ chẵn. Nếu $n$ có dạng $4k+2$. Vì $A=0$ nên trong $4k+2$ số hạng trên sẽ có $2k+1$ số có giá trị là $1$ và $2k+1$ số có giá trị $-1$. Vì mỗi số $a_i$ trong $A$ xuất hiện $2$ lần nên \(a_1a_2a_2a_3....a_{n-1}a_na_{n}a_{1}=(a_1a_2...a_n)^2=1^{2k+1}(-1)^{2k+1}=-1\) (vô lý)

Do đó $n$ phải có dạng $4k$, tức là $n$ chia hết cho $4$ (đpcm)

29 tháng 4 2016

Câu 1. 

A =  {15;16;17;18;19}  (0,25đ)

Câu 2. 

a.  2.(72 – 2.32) – 60

            = 2.(49 – 2.9) – 60              (0,25đ)

= 2.31 – 60              (0,25đ)

            = 62 – 60  = 2           (0,25đ)

b.   27.63 + 27.37

            = 27.(63 + 37)                  (0,25đ)

= 27.100          (0,25đ)

            = 2700          (0,25đ)

c. l-7l + (-8) + l-11l + 2

            = 7 + (-8) + 11 + 2        (0,5 đ)  

            = 12     (0,25đ)

d. 568 – 34 {5.l9 – ( 4-1)2l + 10}

        = 568 – 34 {5.[9-9] + 10}      (0,25đ)

=  568 – 34.10

= 568 – 340           (0,25đ)

      = 228               (0,25đ)

Câu 3. 

a)2x + 3 = 52 : 5

      2x + 3 =5              (0,25đ)

2x  = 5-3            (0,25đ)

2x   =2            (0,25đ)

x=1            (0,25đ)

b)

105 – ( x + 7) = 27 : 25

105 – ( x + 7) = 22             (0,25đ)

105 – ( x + 7) = 4            (0,25đ)

x + 7 = 105 – 4                (0,25đ)

x + 7 = 101                      (0,25đ)

x   =  101 – 7            (0,25đ)

x  = 94             (0,25đ)

Câu 4.

Gọi x (hs) là số học sinh lớp 6B phải tìm (30<x< 38, x)

Vì hs lớp 6B xếp 2,  hàng, 4 hàng, 8 hàng đều vừa đủ nên x⋮2; x⋮4; x8 hay x  ∈ BC{2;4;8}            (0,25đ)

Ta có: BCNN(2,4,8) = 8               (0,25đ)

⇒ BC(2,4,8) = B(8) ={0; 8; 16;24; 32; 40; …}

Mặt khác: 30<x< 38            (0,25đ)

Nên  x = 32

Vậy số học sinh lớp 6B là 32 học sinh    (0,25đ)

Câu 5. 

Khi M nằm giữa và cách đều hai điểm A và B     (0,5đ)

Vẽ được hình có điểm M là trung điểm của AB    (0,5đ)

Câu 6.a)

2015-12-24_155146

0,25đ

Điểm A nằm giữa O và B      (0,25đ)

Vì OA < OB  ( 4 < 8 )       (0,25đ)

Ta có: AO + AB = OB

3 + AB = 6        (0,25đ)

AB = 6 -3 = 3 cm          (0,25đ)

Vậy OA = AB = 3 cm         (0,25đ)

b)

Vì  A nằm giữa O, B và cách đều O và B ( OA = AB )          (0,25đ)

Nên A là trung điểm OB           (0,25đ)

29 tháng 4 2016

Chép trên mạng thôi  limdim

27 tháng 4 2017

Suy ra có 11 giá trị n nên có 11 phần tử bằng nhau. Chọn C.

11 tháng 2 2017

Chọn B

Cấp số nhân có công thức có số hạng tổng quát là 

29 tháng 5 2017

15 tháng 12 2019

Đáp án A