K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 1 2017

Lời giải:

\(A=a_1a_2+a_2a_3+....+a_{n-1}a_n+a_na_1=0\)

Nếu $n$ lẻ, ta thấy tổng $A$ gồm lẻ số hạng, mỗi số hạng có giá trị $1$ hoặc $-1$ nên $A$ lẻ \(\Rightarrow A\neq 0\) (vô lý)

Do đó $n$ chẵn. Nếu $n$ có dạng $4k+2$. Vì $A=0$ nên trong $4k+2$ số hạng trên sẽ có $2k+1$ số có giá trị là $1$ và $2k+1$ số có giá trị $-1$. Vì mỗi số $a_i$ trong $A$ xuất hiện $2$ lần nên \(a_1a_2a_2a_3....a_{n-1}a_na_{n}a_{1}=(a_1a_2...a_n)^2=1^{2k+1}(-1)^{2k+1}=-1\) (vô lý)

Do đó $n$ phải có dạng $4k$, tức là $n$ chia hết cho $4$ (đpcm)

26 tháng 11 2016

P = 7 + 72 + 73 + ... + 72016

=> P = 7( 1 + 7 + 72 + 73) + ... + 72013( 1 + 7 + 72 + 73)

=> P = 7( 1 + 7 + 49 + 343) + ... + 72013( 1 + 7 + 49 + 343)

=> P = 7 . 400 + ... + 72013 . 400

=> P = (7 + ... + 72013) . 400

=> P = (7 + ... + 72013) . 202 (đpcm)

29 tháng 12 2015

chịu

Câu1: Cho số xyz chia hết cho 37. Chứng minh rằng số yzx chia hết cho 37Câu2: có hay không 2 số tự nhiên x và y sao cho: 2002x + 5648y = 203 253 ?Câu3: từ 1 đến 1000 có bao nhiêu số chia hết cho 2, có bao nhiêu số chia hết cho 5 ?Câu4: tích ( n+2002 ).( n+2003 ) có chia hết cho 2 không? giải thích?Câu5: tìm x,y để số 30xy chia hết cho cả 2 và 3, và chia cho 5 dư 2Câu6: Viết số tự nhiên nhỏ nhất có 5 chữ số,...
Đọc tiếp

Câu1: Cho số xyz chia hết cho 37. Chứng minh rằng số yzx chia hết cho 37

Câu2: có hay không 2 số tự nhiên x và y sao cho: 2002x + 5648y = 203 253 ?

Câu3: từ 1 đến 1000 có bao nhiêu số chia hết cho 2, có bao nhiêu số chia hết cho 5 ?

Câu4: tích ( n+2002 ).( n+2003 ) có chia hết cho 2 không? giải thích?

Câu5: tìm x,y để số 30xy chia hết cho cả 2 và 3, và chia cho 5 dư 2

Câu6: Viết số tự nhiên nhỏ nhất có 5 chữ số, tận cùng bằng 6 và chia hết cho 9.

 Câu7: 

      a, Có bao nhiêu số có 2 chữ số chia hết cho 9 ?

      b, Tìm tổng các số có 2 chữ số chia hết cho 9 .

Câu8: chứng minh rằng:

      a, 102002 + 8 chia hết cho cả 9 và 2 .

      b, 102004 + 14 chia hết cho cả 2 và 3 .

Câu9: tìm tập hợp A các số tự nhiên x là ước của 75 và là bội của 3.

Câu10: tìm các số tự nhiên x,y sao cho: ( 2x + 1 ). ( y - 5 ) = 12

Câu11: số ababab là số nguyên tố hay hợp số ?

Câu12: chứng minh rằng số abcabc chia hết ít nhất cho 3 số nguyên tố.

Câu13: chứng minh rằng: 2001 . 2002 . 2003 . 2004 + 1 là hợp số.

Câu14: tướng Trần Hưng Đạo đánh tan 50 vạn quân nguyên năm abcd, biết : a là số tự nhiên nhỏ nhất khác 0 ; b là số nguyên tố nhỏ nhất; c là hợp số chẵn lớn nhất có một chữ số; d là số tự nhiên liền sau số nguyên tố lẻ nhỏ nhất. Vậy abcd là năm nào ?

Câu15: cho p là một số nguyên tố lớn hơn 3 và 2p + 1 cũng là một số nguyên tố, thì 4p + 1 là số nguyên tố hay hợp số ? vì sao ?

Câu16: tìm 3 số tự nhiên liên tiếp có tích bằng 19 656.

Câu17: tìm số tụ nhiên n biết rằng: 1 + 2 + 3 +...+ n = 1275

Câu18: tìm số chia và thương của một phép chia, biết số bị chia là 150 và số dư là 7.

Câu19: tìm giao của 2 tập hợp A và B :

      a, A là tập hợp các số tự nhiên chia hết cho 3. B là tập hợp các số tự nhiên chia hết cho 9.

      b, A là tập hợp các số nguyên tố. B là tâp hợp các hợp số.

      c, A là tập hợp các số nguyên tố bé hơn 10. B là tập hợp các chữ số lẻ.

                                                                   --------- Hết---------

                                                           GIÚP VỚI, MAI NỘP RỒI. 

11
15 tháng 2 2016

Câu 1 : Việc gõ ký hiệu như bạn đề cập ; mình cũng không biết phải làm sao nên cứ dùng xyz vậy thôi. 


Ta có: 

xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37 

Lại có: 
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37 

Vậy yzx cũng phải chia hết cho 37 


Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.

18 tháng 2 2016

nhiều có làm sao hết 

17 tháng 2 2016

Bài 2:

a) Ta có:

\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)

\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)

Vậy \(S\) \(\text{⋮}\) \(-20\)

17 tháng 2 2016

Bài 1:

Ta có:

\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)

\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)

\(=\left(-12\right).m^2.3.n^3\)

\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)

Xét: \(m^2\ge0\) với V m

3>0 nên \(m^2.3\ge0\) với V m

Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)

-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)

Vậy với n<0 và mọi m thì \(A\ge0\)

 

27 tháng 12 2015

Bài nào không hiểu thì mình giải cho 

27 tháng 12 2015

dễ 

10 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)

\(x=0;x^2+3x+m=0\)(*)

để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0

\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)

từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)

ta tính \(y'=3x^2+6x+m\)

vì tiếp tuyến tại Dvà E vuông góc

suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)

giải pt đối chiếu với đk suy ra đc đk của m

27 tháng 1 2016

khó

27 tháng 1 2016

không biết làm

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b