Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
{5u1+10u=0S4=14{5u1+10u=0S4=14
⇔{5u1+10(u1+4d)=04(2u1+3d)2=14⇔{3u1+8d=02u1+3d=7⇔{u1=8d=−3⇔{5u1+10(u1+4d)=04(2u1+3d)2=14⇔{3u1+8d=02u1+3d=7⇔{u1=8d=−3
Vậy số hạng đầu u1 = 8, công sai d = -3
b) Ta có:
{u7+u15=60u24+u212=1170⇔{(u1+6d)+(u1+14d)=60(1)(u1+3d)2+(u1+11d)2=1170(2){u7+u15=60u42+u122=1170⇔{(u1+6d)+(u1+14d)=60(1)(u1+3d)2+(u1+11d)2=1170(2)
(1) ⇔ 2u1 + 20d = 60 ⇔ u1 = 30 – 10d thế vào (2)
(2) ⇔[(30 – 10D) + 3d]2 + [(30 – 10d) + 11d]2 = 1170
⇔ (30 – 7d)2 + (30 + d)2 = 1170
⇔900 – 420d + 49d2 + 900 + 60d + d2 = 1170
⇔ 50d2 – 360d + 630 = 0
⇔[d=3⇒u1=0d=215⇒u1=−12⇔[d=3⇒u1=0d=215⇒u1=−12
Vậy
{u1=0d=3{u1=0d=3
hay
{u1=−12d=215
a) Áp dụng công thức tính số hạng tổng quát, ta có:
u3 = 3 = u1.q2 và u5 = 27 = u1.q4.
Vì 27 = (u1q2).q2 = 3.q2 nên q2 = 9 hay q = ±3.
Thay q2 = 9 vào công thức chứa u3, ta có u1 = .
- Nếu q = 3, ta có cấp số nhân: , 1, 3, 9, 27.
- Nếu q = -3, ta có cáp số nhân: , -1, 3, -9, 27.
b) Áp dụng công thức tính số hạng tỏng quát từ giả thiết, ta có:
hay
Từ hệ trên ta được: 50.q = 25 => q = .
Và u1 = .
Ta có cấp số nhân .
Gọi số hạng đầu và công bội của cấp số nhân là: \(u_1;q\).
a) Theo tính chất của cấp số nhân ta có:
\(\left\{{}\begin{matrix}u_1q^4-u_1=15\\u_1q^3-u_1q=6\end{matrix}\right.\)\(\Rightarrow\dfrac{u_1\left(q^4-1\right)}{u_1\left(q^3-q\right)}=\dfrac{15}{6}\)\(\Leftrightarrow\dfrac{\left(q^2-1\right)\left(q^2+1\right)}{q\left(q^2-1\right)}=\dfrac{15}{6}\)\(\Leftrightarrow\dfrac{q^2+1}{q}=\dfrac{15}{6}\)
\(\Leftrightarrow6\left(q^2+1\right)=15q\)\(\Leftrightarrow6q^2-15q+6=0\)\(\Leftrightarrow\left[{}\begin{matrix}q=2\\q=\dfrac{1}{2}\end{matrix}\right.\).
Với \(q=2\).
Suy ra: \(u_1\left(q^4-q\right)=15\Rightarrow u_1=\dfrac{15}{q^4-q}=\dfrac{15}{14}\).
Với \(q=\dfrac{1}{2}\)
Suy ra \(u_1=\dfrac{15}{q^4-q}=\dfrac{-240}{7}\).
Trong bài này ta áp dụng công thức tinh số hạng tổng quát un = u1.qn-1, biết hai đại lượng, ta sẽ tìm đại lượng còn lại:
a) q = 3.
b) u1 =
c) Theo đề bài ta có un = 192, từ đó ta tìm được n. Đáp số: n =7
a)
\(\dfrac{u_6}{u_1}=q^5=\dfrac{486}{2}=243=3^5\) . Suy ra: \(q=3\).
b)
\(u_4=u_1q^3=u_1.\left(\dfrac{2}{3}\right)^3=\dfrac{8}{21}\)\(\Rightarrow u_1=\dfrac{9}{7}\).
c) \(u_n=3.\left(-2\right)^{n-1}=192\)\(\Leftrightarrow\left(-2\right)^{n-1}=64=\left(-2\right)^6\)\(\Leftrightarrow n-1=6\)\(\Leftrightarrow n=7\).
Vậy số hạng thứ 7 bằng 192.
a: u4=u1+3d
=>u1=-5-3d=-5-3*3=-14
u15=u1+14d=-14+14*3=28
b: Đặt 145=u1+3(n-1)
=>3(n-1)-14=145
=>3(n-1)=159
=>n-1=53
=>n=54