Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \({u_n} - {u_{n - 1}} = \left( {3n + 6} \right) - \left[ {3\left( {n - 1} \right) + 6} \right] = 3,\;\forall n \ge 2\)
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 3\).
Chọn đáp án A.
\({S_5} = \frac{{5\left[ {2{u_1} + \left( {5 - 1} \right)d} \right]}}{2} = \frac{{5\left[ {2.\left( { - 1} \right) + \left( {5 - 1} \right).3} \right]}}{2} = 25\).
Chọn D.
a) Ta có:
\(\begin{array}{l}{u_1} + {u_2} + {u_3} = - 1 \Leftrightarrow {u_1} + {u_1} + d + {u_1} + 2d = - 1\\ \Leftrightarrow 3{u_1} + 3d = - 1\\ \Leftrightarrow 3.\left( {\frac{1}{3}} \right) + 3d = - 1\\ \Leftrightarrow 3d = - 2\\ \Leftrightarrow d = - \frac{2}{3}\end{array}\)
Công thức tổng quát của số hạng \({u_n}\): \({u_n} = \frac{1}{3} + \left( {n - 1} \right)\left( { - \frac{2}{3}} \right)\)
b) Ta có:
\(\begin{array}{l} - 67 = \frac{1}{3} + \left( {n - 1} \right).\left( { - \frac{2}{3}} \right)\\ \Leftrightarrow n - 1 = 101\\ \Leftrightarrow n = 102\end{array}\)
- 67 là số hạng thứ 102 của cấp số cộng
c) Ta có:
\(\begin{array}{l}7 = \frac{1}{3} + \left( {n - 1} \right).\left( { - \frac{2}{3}} \right)\\ \Leftrightarrow n - 1 = - 10\\ \Leftrightarrow n = - 9\end{array}\)
7 không là số hạng của cấp số cộng
Ta có:
u 6 = 27 ⇔ u 1 + 5 d = 27
⇔ - 3 + 5 d = 27 ⇔ d = 6
Chọn C
\(\lim\dfrac{1-\sqrt{4n^2+3}}{n+4}=\lim\dfrac{\dfrac{1}{n}-\sqrt{4+\dfrac{3}{n^2}}}{1+\dfrac{4}{n}}=-2\)
\(\Rightarrow d=-2\)
\(\Rightarrow S_{10}=10.8+\dfrac{9.10}{2}.\left(-2\right)=-10\)
\(a,u_{12}=u_1+\left(12-1\right)d=u_1+11d=\left(-3\right)+11\cdot2=19\)
b, Giả sử số 195 là số hạng thứ n (n \(\in\) N*) của cấp số cộng.
Ta có:
\(u_n=u_1+\left(n-1\right)d\\ \Leftrightarrow195=-3+\left(n-1\right)\cdot2\\ \Leftrightarrow n=100\)
Vậy số 195 là số hạng thứ 100 của cấp số cộng.
1: u3=-3 và u9=29
=>u1+2d=-3 và u1+8d=29
=>-6d=-32 và u1+2d=-3
=>d=16/3 và u1=-3-2d=-3-32/3=-41/3
2: \(S_{20}=\dfrac{20\cdot\left[2\cdot u1+19\cdot d\right]}{2}=10\cdot\left(-5\cdot2+19\cdot3\right)\)
=10(57-10)
=10*47=470
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
Chọn đáp án D
Sử dụng công thức:
Cho cấp số cộng có số hạng đầu u 1 và công sai d thì số hạng thứ n ( n > 1 )
là u n = u 1 + ( n - 1 ) d
Từ đó ta tìm được công sai d
Cách giải
Ta có u 10 = u 1 + 9 d ⇔ 9 d = 27 ⇔ d = 3