Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(B=3+3^2+3^3+...+3^{120}\)
\(B=3\cdot1+3\cdot3+3\cdot3^2+...+3\cdot3^{119}\)
\(B=3\cdot\left(1+3+3^2+...+3^{119}\right)\)
Suy ra B chia hết cho 3 (đpcm)
b) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3\right)+\left(1\cdot3^3+3\cdot3^3\right)+\left(1\cdot3^5+3\cdot3^5\right)+...+\left(1\cdot3^{119}+3\cdot3^{119}\right)\)
\(B=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+3^5\cdot\left(1+3\right)+...+3^{119}\cdot\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{119}\cdot4\)
\(B=4\cdot\left(3+3^3+3^5+...+3^{119}\right)\)
Suy ra B chia hết cho 4 (đpcm)
c) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3+3^2\cdot3\right)+\left(1\cdot3^4+3\cdot3^4+3^2\cdot3^4\right)+...+\left(1\cdot3^{118}+3\cdot3^{118}+3^2\cdot3^{118}\right)\)
\(B=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+3^7\cdot\left(1+3+9\right)+...+3^{118}\cdot\left(1+3+9\right)\)
\(B=3\cdot13+3^4\cdot13+3^7\cdot13+...+3^{118}\cdot13\)
\(B=13\cdot\left(3+3^4+3^7+...+3^{118}\right)\)
Suy ra B chia hết cho 13 (đpcm)
Có góc xOt + góc yOt=180' (2 gocke bu)
130' + góc yOt =180'
goc yOt=180'-130'
gocyOt=50'
Có góc yOt+góc tOz=góc yOz(Ot nằm giữa Oz và Oy)
50'+goctOz=100'
góc tOz=100'-50'
góc tOz=50'
đề như ***
cho góc xOy và góc yOz, tự nhiên lại có góc AOC = 70o
xem lại đề
2. x y x' O 80 0
Giải: Ta có : \(\widehat{xOy}+\widehat{yOx'}=180^0\)(kề bù)
=> \(\widehat{yOx'}=180^0-\widehat{xOy}=180^0-80^0=100^0\)
=> \(\widehat{xOy}< \widehat{xOy'}\)(800 < 1000)
Vậy ....
3. O a b c
Giải: Ta có: \(\widehat{aOb}+\widehat{bOc}=90^0\)(phụ nhau )
hay 2.\(\widehat{bOC}+\widehat{bOc}=90^0\)
=> \(\widehat{bOc}.\left(2+1\right)=90^0\)
=> \(\widehat{bOc}.3=90^0\)
=> \(\widehat{bOc}=90^0:3=30^0\)
=> \(\widehat{aOb}=90^0-30^0=60^0\)
Vậy ...
(-4;-3;-2;-1;0;1;2;3;4)
Ko có dấu ngoặc nhọn nên mik xài ngoặc tròn nha
a) Mình k chép lại đề nữa nha!
Vì |x+45-40| luôn lớn hơn hoặc bằng 0 với mọi x.
|y+10-11| luôn lớn hơn hoặc bằng 0 với mọi y
Mà |x+45-40|+|y+10-11| nhỏ hơn hoặc bằng 0
Nên |x+45-40| =0 => x=-5
Và |y+10-11|=0 => y=1
Vậy x= -5; y =1
Chúc bạn học tốt nha!
b) 10000-|x+5|
Vì |x+ 5| luôn lớn hơn hoặc bằng 0 với mọi x
=> 10000-|x+5| luôn nhỏ hơn hoặc bằng 10000 với mọi x
Dấu = xảy ra <=>: x+5 = 0
<=> x=-5
Vậy GTLN của biểu thức trên là 10000 tại x=-5.
Bài làm:
a) Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{7}=\frac{y}{5}=\frac{z}{6}=\frac{x-2y+3z}{7-10+18}=\frac{60}{15}=4\)
\(\Rightarrow\hept{\begin{cases}x=28\\y=20\\z=24\end{cases}}\)
b) Ta có: \(\frac{x}{y}=\frac{3}{5}\Leftrightarrow\frac{x}{3}=\frac{y}{5}\) và \(\frac{y}{z}=\frac{5}{8}\Leftrightarrow\frac{y}{5}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{3+5+8}=\frac{72}{16}=\frac{9}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{45}{2}\\z=36\end{cases}}\)
a) \(\hept{\begin{cases}\frac{x}{7}=\frac{y}{5}=\frac{z}{6}\\x-2y+3z=60\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}\\x-2y+3z=60\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}=\frac{x-2y+3z}{7-10+18}=\frac{60}{15}=4\)
\(\Rightarrow\hept{\begin{cases}x=28\\y=20\\z=24\end{cases}}\)
b) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\\frac{y}{z}=\frac{5}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\\frac{y}{5}=\frac{z}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\\x+y+z=72\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{3+5+8}=\frac{72}{16}=\frac{9}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{45}{2}\\z=36\end{cases}}\)
Tính được z O y ^ = 150 °