Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔABK vuông tại K và ΔADK vuông tại K có
AB=AD
AK chung
=>ΔABK=ΔADK
b: Xét ΔAEK vuông tại E và ΔAFK vuông tại F có
AK chung
góc EAK=góc FAK
=>ΔAEK=ΔAFK
=>AE=AF và KE=KF
=>ΔAEF cân tại A và ΔKEF cân tại K
c: AE=AF
KE=KF
=>AK là trung trực của EF
=>AK vuông góc EF
a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
AH=AK(gt)
Do đó: ΔAHD=ΔAKD(cạnh huyền-cạnh góc vuông)
2: góc ABH+góc HBC=góc ABC
góc ACK+góc KCB=góc ACB
mà góc ABC=góc ACB; góc HBC=góc KCB
nên góc ABH=góc ACK
a: Xét ΔAHB vuôg tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔABH=ΔACH
=>góc BAH=góc CAH
b: Đề bài yêu cầu gì vậy bạn?
a/ Có \(\widehat{ABC}=\widehat{ACB}\) (t/g ABC cân tại A)
=> \(180^o-\widehat{ABC}=180^o-\widehat{ACB}\)
=> \(\widehat{ABH}=\widehat{ACK}\)
b/ Xét t/g ABH và t/g ACK có
AB = AC
\(\widehat{ABH}=\widehat{ACK}\)
BH = CK
=> t/g ABH = t/g ACK (c.g.c)
=> AH = AK
=> t/g AHK cân tại A
c/ Xét t/g BHM vuông tại M và t/g CKN vuông tại N có
BH = CK\(\widehat{AHK}=\widehat{AKH}\) (t/g AHK caantai A)
=> t/g BHM = t/g CKN (ch-gn)
=> BM = CNd/ Có
AH = AK
HM = KN (t.g BHM = t/g CKN)
=> AM =AN
=> t/g AMN cân tại A
=> \(\widehat{AMN}=\dfrac{180^o-\widehat{HAK}}{2}\)
Mà \(\widehat{AHK}=\dfrac{180^o-\widehat{HAK}}{2}\) (t/g AHK cân tại A)
=> \(\widehat{AMN}=\widehat{AHK}\)
Mà 2 góc này đồng vị
=> MN// HK
a) Ta có: \(\widehat{ABC}+\widehat{ABH}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACK}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{ABH}=\widehat{ACK}\)(đpcm)
b) Xét ΔABH và ΔACK có
AB=AC(ΔABC cân tại A)
\(\widehat{ABH}=\widehat{ACK}\)(cmt)
BH=CK(gt)
Do đó: ΔABH=ΔACK(c-g-c)
nên AH=AK(hai cạnh tương ứng)
Xét ΔAHK có AH=AK(cmt)
nên ΔAHK cân tại A(Định nghĩa tam giác cân)
c) Xét ΔMHB vuông tại M và ΔNKC vuông tại N có
BH=CK(gt)
\(\widehat{H}=\widehat{K}\)(hai góc ở đáy của ΔAHK cân tại K)
Do đó: ΔMHB=ΔNKC(cạnh huyền-góc nhọn)
Suy ra: BM=CN(hai cạnh tương ứng)
d) Ta có: ΔMHB=ΔNKC(cmt)
nên MH=NK(hai cạnh tương ứng)
Ta có: AM+MH=AH(M nằm giữa A và H)
AN+NK=AK(N nằm giữa A và K)
mà AK=AH(cmt)
và MH=NK(cmt)
nên AM=AN
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
Ta có: ΔAMN cân tại A(cmt)
nên \(\widehat{AMN}=\dfrac{180^0-\widehat{MAN}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)
hay \(\widehat{AMN}=\dfrac{180^0-\widehat{HAK}}{2}\)(1)
Ta có: ΔAHK cân tại A(cmt)
nên \(\widehat{AHK}=\dfrac{180^0-\widehat{HAK}}{2}\)(Số đo của một góc ở đáy trong ΔAHK cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{AHK}\)
mà \(\widehat{AMN}\) và \(\widehat{AHK}\) là hai góc ở vị trí đồng vị
nên MN//HK(Dấu hiệu nhận biết hai đường thẳng song song)
Bài 2:
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔADB=ΔAEC
Suy ra: AD=AE
hayΔADE cân tại A
b: Xét ΔABC có
AE/AB=AD/AC
nên DE//BC
c: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
EC=DB
BC chung
Do đó: ΔEBC=ΔDCB
Suy ra: \(\widehat{IBC}=\widehat{ICB}\)
hay ΔIBC cân tại I
d: Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD
Do đó: ΔAEI=ΔADI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
=>AK là tia phân giác của góc BAC
Ta có: ΔABC cân tại A
mà AK là đường phân giác
nên AK là đường cao