Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(I_{V1}=\dfrac{U_1}{R_V};I_{V2}=\dfrac{U_2}{R_V};I_{V3}=\dfrac{U_3}{R_V}\)
\(U_2=\left(2R+R_V\right)I_{V1}=\left(2R+R_V\right)\cdot\dfrac{U_1}{R_V}=U_1\left(\dfrac{2R}{R_V}+1\right)\Leftrightarrow\dfrac{R}{R_V}=\dfrac{\dfrac{U_2}{U_1}-1}{2}\left(1\right)\)
\(U_3=2R\left(I_{V1}+I_{V2}\right)+U_2=2R\left(\dfrac{U_1+U_2}{R_V}\right)+U_2=\dfrac{R}{R_V}\cdot2\left(U_1+U_2\right)+U_2\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow U_3=\left(\dfrac{U_2}{U_1}-1\right)\left(U_1+U_2\right)+U_2\)
thay số ta được: \(5=\left(U_2-1\right)\left(U_2+1\right)+U_2=U^2_2+U_2-1\Leftrightarrow U^2_2+U_2-6=0\Leftrightarrow\left[{}\begin{matrix}U_2=2V\\U_2=-3\left(loại\right)\end{matrix}\right.\)
\(U_4=2R\left(I_{V1}+I_{V2}+I_{V3}\right)+U_3\)
\(\Leftrightarrow U_4=\dfrac{2R}{R_V}\left(U_1+U_2+U_3\right)+U_3\)
\(\Leftrightarrow U_4=\left(\dfrac{U_2}{U_1}-1\right)\left(U_1+U_2+U_3\right)+U_3\)
\(\Leftrightarrow U_4=\left(2-1\right)\left(1+2+5\right)+5=13V\)
\(a,12V=V_1+V_2\)
\(\rightarrow V_1=4V\)
\(R_1=\dfrac{U}{I_1}=\dfrac{4}{0,8}=5\left(\Omega\right)\)
\(R_2=\dfrac{U}{I_2}=\dfrac{8}{0,8}=10\left(\Omega\right)\)
\(b,I=\dfrac{30V}{R_1+R_2}=\dfrac{30}{15}=2\left(A\right)\)
\(V=5\Omega.2A+10\Omega2A=10V+20V=30V\)
\(A=I=2\left(A\right)\)
TH1: K mở =>R0 nt R2
\(=>U1=I0.R0\left(V\right)\)
\(=>Ubd=I0.Rtd=\dfrac{U1}{R0}\left(R0+R2\right)=>Ubd=U1+\dfrac{U1.R2}{R0}\)
\(=>\dfrac{U1.R2}{R0}=Ubd-U1=>R0=\dfrac{U1.R2}{Ubd-U1}\)
Th2: R0 nt (R1//R2)
\(=>U0=U2\)
\(=>Ubd=U2+I0.R12=U2+\dfrac{U2}{R0}.\dfrac{R1.R2}{R1+R2}\)
\(=>Ubd=U2+\dfrac{U2}{R0}.\dfrac{\dfrac{R2}{4}.R2}{\dfrac{R2}{4}+R2}=U2+\dfrac{U2}{R0}.\dfrac{\dfrac{R2^2}{4}}{\dfrac{5R2}{4}}\)
\(=U2+\dfrac{U2}{R0}.\dfrac{R2}{5}=>Ubd=U2+\dfrac{U2.R2}{5R0}\)
\(=>R0=\dfrac{U2.R2}{5\left(Ubd-U2\right)}\)
\(=>\dfrac{U1.R2}{Ubd-U1}=\dfrac{U2.R2}{5\left(Ubd-U2\right)}\)
\(=>Ubd=\dfrac{4U1U2}{5U1-U2}\)