K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Lời giải:

Ta có \(\overrightarrow{a}+\overrightarrow{b}+3\overrightarrow{c}=0\)

\(\Rightarrow \overrightarrow{a}+\overrightarrow{b}+\overrightarrow {c}=-2\overrightarrow{c}\)

\(\Rightarrow (\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c})^2=(-2\overrightarrow{c})^2\)

\(\Leftrightarrow a^2+b^2+c^2+2(\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a})=4c^2\)

\(\Leftrightarrow x^2+y^2+z^2+2(\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a})=4z^2\)

\(\Leftrightarrow 2(\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a})=3z^2-x^2-y^2\)

\(\Leftrightarrow A=\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}=\frac{3z^2-x^2-y^2}{2}\)

NV
13 tháng 12 2020

\(\overrightarrow{a}+\overrightarrow{b}+3\overrightarrow{c}=\overrightarrow{0}\Leftrightarrow\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=-2\overrightarrow{c}\)

\(\Leftrightarrow\left(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right)^2=\left(-2\overrightarrow{c}\right)^2\)

\(\Leftrightarrow\overrightarrow{a}^2+\overrightarrow{b}^2+\overrightarrow{c}^2+2\left(\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}\right)=4\overrightarrow{c}^2\)

\(\Leftrightarrow A=\dfrac{4x^2-\left(x^2+y^2+z^2\right)}{2}=\dfrac{3x^2-y^2-z^2}{2}\)

9 tháng 2 2021

Ta có:

\(\overrightarrow{a}+\overrightarrow{b}+3\overrightarrow{c}=\overrightarrow{0}\Leftrightarrow\overrightarrow{a}+\overrightarrow{b}=-3\overrightarrow{c}\Leftrightarrow\left(\overrightarrow{a}+\overrightarrow{b}\right)^2=9\overrightarrow{c}^2\)

<=> \(\overrightarrow{a}^2+\overrightarrow{b}^2+2\overrightarrow{a}\overrightarrow{b}=9\overrightarrow{c}^2\)

<=> \(\overrightarrow{a}\overrightarrow{b}=\dfrac{9z^2-x^2-y^2}{2}\)

Tương tự ta có: \(\overrightarrow{b}+3\overrightarrow{c}=-\overrightarrow{a}\) <=> \(\left(\overrightarrow{b}+3\overrightarrow{c}\right)^2=\overrightarrow{a}^2\) 

<=> \(\overrightarrow{b}.\overrightarrow{c}=\dfrac{x^2-y^2-9z^2}{2}\)

Và lại có : \(\overrightarrow{a}\overrightarrow{c}=\dfrac{y^2-x^2-9z^2}{2}\)

Suy ra: A=\(\dfrac{9z^2-x^2-y^2}{2}+\dfrac{x^2-y^2-9z^2}{2}+\dfrac{y^2-x^2-9z^2}{2}=\dfrac{3z^2-z^2-y^2}{2}\)

14 tháng 1 2021

Giả thiết => cos \(\left(\overrightarrow{a};\overrightarrow{b}\right)=\dfrac{1}{2}\)

⇒ \(\left(\overrightarrow{a};\overrightarrow{b}\right)=60^0\)

loading...

Tương tự, ta được:

\(\left(2-y\right)\left(2-z\right)>=\dfrac{\left(x+1\right)^2}{4}\)

và \(\left(2-z\right)\left(2-x\right)>=\left(\dfrac{y+1}{2}\right)^2\)

=>8(2-x)(2-y)(2-z)>=(x+1)(y+1)(z+1)

(x+yz)(y+zx)<=(x+y+yz+xz)^2/4=(x+y)^2*(z+1)^2/4<=(x^2+y^2)(z+1)^2/4

Tương tự, ta cũng co:

\(\left(y+xz\right)\left(z+y\right)< =\dfrac{\left(y^2+z^2\right)\left(x+1\right)^2}{2}\)

và \(\left(z+xy\right)\left(x+yz\right)< =\dfrac{\left(z^2+x^2\right)\left(y+1\right)^2}{2}\)

Do đó, ta được:

\(\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)< =\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

=>ĐPCM

 

NV
14 tháng 12 2020

\(\left(a^2+b^2+c^2+1\right)x=ab+bc+ca\)

\(\Leftrightarrow x=\dfrac{ab+bc+ca}{a^2+b^2+c^2+1}\)

Ta có:

\(x^2-1=\dfrac{\left(ab+bc+ca\right)^2}{\left(a^2+b^2+c^2+1\right)^2}-1=\dfrac{\left(ab+bc+ca-a^2-b^2-c^2-1\right)\left(ab+bc+ca+a^2+b^2+c^2+1\right)}{\left(a^2+b^2+c^2+1\right)^2}\)

\(=\dfrac{\left[-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2-2\right]\left[\left(a+b+c\right)^2+a^2+b^2+c^2+2\right]}{4\left(a^2+b^2+c^2+1\right)^2}< 0\)

\(\Rightarrow x^2-1< 0\Rightarrow\left|x\right|< 1\)

2 tháng 5 2019

Please !!!!!

NV
26 tháng 3 2023

\(VT=\dfrac{a+b}{2\sqrt[3]{abc}}+\dfrac{b+c}{2\sqrt[3]{abc}}+\dfrac{c+a}{2\sqrt[3]{abc}}+\dfrac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge4\) (AM-GM 4 số hạng)