K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A\cap B=\left(-3;1\right)\)

\(A\cup B\)=[-5;4]

A\B=[1;4]

\(C_RA\)=R\A=(-∞;-3]\(\cap\)(4;+∞)

b: C={1;-1;5;-5}

\(B\cap C=\left\{-5;-1\right\}\)

Các tập con là ∅; {-5}; {-1}; {-5;-1}

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Để hàm số \(y = m{x^4} + (m + 1){x^2} + x + 3\) là hàm số bậc hai thì:

\(\left\{ \begin{array}{l}m = 0\\m + 1 \ne 0\end{array} \right.\) tức là \(m = 0.\)

Khi đó \(y = {x^2} + x + 3\)

Vây \(m = 0\) thì hàm số đã cho là hàm số bậc hai \(y = {x^2} + x + 3\)

b) Để hàm số \(y = (m - 2){x^3} + (m - 1){x^2} + 5\) là hàm số bậc hai thì:

\(\left\{ \begin{array}{l}m - 2 = 0\\m - 1 \ne 0\end{array} \right.\) tức là \(m = 2.\)

Khi đó \(y = (2 - 1){x^2} + 5 = {x^2} + 5\)

Vây \(m = 2\) thì hàm số đã cho là hàm số bậc hai \(y = {x^2} + 5\)

29 tháng 4 2020

a/ từ yc đề bài => \(2x^2+\left(m-1\right)x+1-m\ge0\)

nghiệm đúng với mọi x thuộc R

=> \(\Delta\le0\Leftrightarrow\left(m-1\right)^2-4\cdot2\left(1-m\right)\le0\)

\(\Leftrightarrow m^2+2m-7\le0\)

\(\Leftrightarrow m\in\left[-1-2\sqrt{2};-1+2\sqrt{2}\right]\)

b/ x2 - (2m-1)x + 2m-2 = 0

để pt có 2 nghiệm pb => \(\Delta>0\Leftrightarrow\left(2m-1\right)^2-4\left(2m-2\right)>0\)

\(\Leftrightarrow4m^2-12m+9>0\Leftrightarrow\left(2m-3\right)^2>0\Leftrightarrow m\ne\frac{3}{2}\)

=> Gọi 2 nghiệm của pt là x1, x2 (x1<x2)

tập nghiệp của bpt đề cho là: \(S=\left[x_1;x_2\right]\)

theo viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=2m-2\end{matrix}\right.\)

Theo đề ta có: \(\left|x_1-x_2\right|=5\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=25\)

\(\Leftrightarrow\left(2m-1\right)^2-4\left(2m-2\right)=25\)

\(\Leftrightarrow4m^2-12m-16=0\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-1\end{matrix}\right.\)(tm)

vậy......

AH
Akai Haruma
Giáo viên
16 tháng 5 2021

Lời giải:

Đặt $\sqrt{x+2}=t(t\geq 0)$ thì pt trở thành:

$t^2-2-2t-m-3=0$

$\Leftrightarrow t^2-2t-(m+5)=0(*)$

Để PT ban đầu có 2 nghiệm pb thì PT $(*)$ có 2 nghiệm không âm phân biệt.

Điều này xảy ra khi \(\left\{\begin{matrix} \Delta'=1+m+5>0\\ S=2>0\\ P=-(m+5)\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>-6\\ m\leq -5\end{matrix}\right.\)

Đáp án B.

a: vecto AB=(2-m;-2)

vecto AC=(-4-m;2)

Để A,B,C ko thẳng hàng thì \(\dfrac{2-m}{-4-m}< >\dfrac{-2}{2}=-1\)

=>2-m<>m+4

=>-2m<>2

=>m<>-1

b: Tọa độ trọng tâm là:

\(\left\{{}\begin{matrix}x=\dfrac{m+2-4}{3}=\dfrac{m-2}{3}\\y=\dfrac{3+1+5}{3}=3\end{matrix}\right.\)

Để M nằm trên d thì \(\left\{{}\begin{matrix}\dfrac{m-2}{3}=t+1\\5-2t=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=1\\m-2=3\cdot2=6\end{matrix}\right.\Leftrightarrow m=8\)

 

a: vecto AB=(2-m;-2)

vecto AC=(-4-m;2)

Để A,B,C ko thẳng hàng thì \(\dfrac{2-m}{-4-m}< >\dfrac{-2}{2}=-1\)

=>2-m<>m+4

=>-2m<>2

=>m<>-1

b: Tọa độ trọng tâm là:

\(\left\{{}\begin{matrix}x=\dfrac{m+2-4}{3}=\dfrac{m-2}{3}\\y=\dfrac{3+1+5}{3}=3\end{matrix}\right.\)

Để M nằm trên d thì \(\left\{{}\begin{matrix}\dfrac{m-2}{3}=t+1\\5-2t=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=1\\m-2=3\cdot2=6\end{matrix}\right.\Leftrightarrow m=8\)

 

30 tháng 5 2021

C1: \(a.sinx+b.cosx=c\) 

Pt vô nghiệm \(\Leftrightarrow a^2+b^2< c^2\) 

Bạn áp dụng công thức trên sẽ tìm ra m

C2: (Bạn vẽ đường tròn lượng giác sẽ tìm được)

Hàm số \(y=sinx\) đồng biến trên khoảng \(\left(-\dfrac{\pi}{2}+k2\pi;\dfrac{\pi}{2}+k2\pi\right)\) ( góc phần tư thứ IV và I)

Hàm nghịch biến trên khoảng \(\left(\dfrac{\pi}{2}+k2\pi;\dfrac{3\pi}{2}+k2\pi\right)\)( góc phần tư thứ II và III)

Ý A, khoảng nằm trong góc phần tư thứ III và thứ IV => Hàm nghịch biến sau đó đồng biến

Ý B, khoảng nằm trong góc phần tư thứ I và thứ II => hàm đồng biến sau đó nghịch biến

Ý C, khoảng nằm trong góc phần tư thứ IV; I ; II => hàm đồng biền sau đó nghịch biến

Ý D, khoảng nằm trong phần tư thứ IV ; I=> hàm đồng biến

Đ/A: Ý D

(Toi nghĩ thế)

 

31 tháng 5 2021

thank u

Cho đường thẳng d đi qua M(2; 3) và tạo với chiều dương trục Ox một góc 450. PTTQ của đường thẳng d là 

A. 2x - y - 1 = 0   B. x - y + 1 = 0   C. x + y - 5 0 =     D. -x + y - 1 = 0