\(\ne\) 0

Chứng minh:

x2 + y

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 3 2018

Lời giải:

Đặt \(\left\{\begin{matrix} (x+y)^2=a\neq 0\\ xy=b\end{matrix}\right.\)

Dùng cách biến đổi tương đương.

Ta có: \(A=x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=(x+y)^2-2xy+\frac{(xy+1)^2}{(x+y)^2}\)

\(A=a-2b+\frac{(b+1)^2}{a}\)

\(A\geq 2\Leftrightarrow a-2b+\frac{(b+1)^2}{a}\geq 2\)

\(\Leftrightarrow a^2-2ab+(b+1)^2\geq 2a\)

\(\Leftrightarrow a^2+b^2+1-2ab+2b-2a\geq 0\)

\(\Leftrightarrow (-a+b+1)^2\geq 0\) (luôn đúng)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(-a+b+1=0\Leftrightarrow x^2+y^2+xy=1\)

11 tháng 3 2018

thằng ngu lê anh tú ko biết gì thì im vào

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\)\(\Rightarrow x^2+y^2=S^2-2P\)

Ta cần chứng minh \(S^2-2P+\left(\frac{P+1}{S}\right)^2\ge2\)

\(\Leftrightarrow S^2-2\left(P+1\right)+\left(\frac{P+1}{S}\right)^2\ge0\)

\(\Leftrightarrow S^2-\frac{2S\left(P+1\right)}{S}+\left(\frac{P+1}{S}\right)^2\ge0\)

\(\Leftrightarrow\left(S-\frac{P+1}{S}\right)^2\ge0\) *luôn đúng*

10 tháng 3 2018

Đề sai. a=0;b=0,1 ko đúng, sửa lại đề đi bn

4 tháng 12 2018

mn ơi tl giúp mik vs

21 tháng 4 2018

Theo mình nó còn có x,y > 0 nữa nha !

Ta có:

\(x^2+y^2+\left(\dfrac{1+xy}{x+y}\right)^2=\left(x+y\right)^2+\left(\dfrac{1+xy}{x+y}\right)^2-2xy\)

Áp dụng BĐT Cosi ta có:

\(\left(x+y\right)^2+\left(\dfrac{1+xy}{x+y}\right)^2\ge2\sqrt{\left(x+y\right)^2\left(\dfrac{1+xy}{x+y}\right)^2}=2\left(1+xy\right)\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\dfrac{1+xy}{x+y}\right)^2-2xy\ge2\left(1+xy\right)-2xy\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\dfrac{1+xy}{x+y}\right)^2-2xy\ge2+2xy-2xy=2\)

\(\Rightarrow\)đpcm

NV
4 tháng 4 2019

1/

\(x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\)

\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\Rightarrow x=2y\) (do \(x+y\ne0\))

\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

2/

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)

\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x-30\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-30=0\\x^2-x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(x-5\right)\left(x+6\right)=0\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)

NV
4 tháng 4 2019

\(x+y=1\Rightarrow\left\{{}\begin{matrix}y-1=-x\\x-1=-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(y-1\right)^2=x^2\\\left(x-1\right)^2=y^2\end{matrix}\right.\)

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{-1}{x^2+3y}+\frac{1}{y^2+3x}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)

\(=\frac{-y^2-3x+x^2+3y}{\left(xy\right)^2+3x^3+3y^3+9xy}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{\left(x-y\right)\left(x+y\right)-3x+3y}{\left(xy\right)^2+3\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)+9xy}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)

\(=\frac{-2\left(x-y\right)}{\left(xy\right)^2+3}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=0\)

NV
29 tháng 4 2020

\(VT=x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2=\left(x+y\right)^2+\left(\frac{1+xy}{x+y}\right)^2-2xy\)

\(VT\ge2\sqrt{\frac{\left(x+y\right)^2\left(1+xy\right)^2}{\left(x+y\right)^2}}-2xy=2\left|1+xy\right|-2xy\)

\(VT\ge2\left(1+xy\right)-2xy=2\) (đpcm)

Dấu "=" xảy ra khi \(\left(x+y\right)^2=1+xy\)

30 tháng 9 2018

Ta có : \(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)

\(\Leftrightarrow\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2axby+2axcz+2bycz=a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)

\(\Leftrightarrow2axby+2axvz+2bycz=a^2y^2+b^2x^2+a^2z^2+c^2x^2+b^2z^2+c^2y^2\)

\(\Leftrightarrow a^2y^2+b^2x^2+a^2z^2+c^2x^2+b^2z^2+c^2y^2-2axby-2azcx-2bycz=0\)

\(\Leftrightarrow\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2azcx+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)

\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)

Do \(\left(ay-bx\right)^2\ge0;\left(az-cx\right)^2\ge0;\left(bz-cy\right)^2\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}ay-bx=0\\az-cx=0\\bz-cy=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay=bx\\az=cx\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{c}{z}=\dfrac{a}{x}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\left(đpcm\right)\)

:Dbanh

13 tháng 4 2018

a) x3 - 5x2 + 8x - 4

= x3 - x2 - 4x2 + 4x + 4x - 4

= x2( x - 1) - 4x( x - 1) + 4( x - 1)

= ( x - 1)( x- 2)2