\(\sqrt{5}\)y

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2020

Bài 1: 

ĐK: \(x,y\ge-2\)

Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)

=> x-y=0=>x=y

Thay y=x vào B ta được:  B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)

Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)

Vậy Min B =9 khi x=y=-1

9 tháng 8 2020

10x100=

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

23 tháng 2 2019

ĐKXĐ: x ; y > -6

Ta có :\(x-\sqrt{y+6}=\sqrt{x+6}-y\)

\(\Rightarrow x+y=\sqrt{x+6}+\sqrt{y+6}\)

 \(\Leftrightarrow P=\sqrt{x+6}+\sqrt{y+6}\left(\text{ }Do\text{ }VP\ge0\text{ }nen\text{ }P\ge0,dau\text{ }\text{ }\text{ }\text{ }"="khi\text{ }x=y=-6\right)\)

\(\Rightarrow P^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\le P+12+x+y+12\)

\(\Leftrightarrow P^2\le2P+24\)

\(\Leftrightarrow P^2-2P-24\le0\)

\(\Leftrightarrow-4\le P\le6\)

Nên Pmax = 6 khi... (Tự làm nhé)

      Pmin = 0 khi x = y = -6

17 tháng 3 2017

Bài này ko khó. Bạn nên tự làm!

18 tháng 3 2017

Ta có điều kiện \(\hept{\begin{cases}y\ge-6\\x\ge-6\\x+y\ge0\end{cases}}\)

Theo đề bài thì: \(x+y=\sqrt{x+6}+\sqrt{y+6}\)

\(\Leftrightarrow\left(x+y\right)^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\)

\(\Leftrightarrow P^2\le\left(1^2+1^2\right)\left(x+y+12\right)\)

 \(\Leftrightarrow P^2-2P-24\ge0\)

\(\Leftrightarrow-4\le P\le6\)

\(\Leftrightarrow-4< P\le6\left(1\right)\)

Ta lại có: 

\(\Leftrightarrow\left(x+y\right)^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\)

\(\Leftrightarrow P^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\)

\(\Leftrightarrow P^2-P-12=2\sqrt{\left(x+6\right)\left(y+6\right)}\ge0\)

\(\Leftrightarrow\left(P+3\right)\left(P-4\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}P\le-3\left(l\right)\\P\ge4\left(2\right)\end{cases}}\)

Từ (1) và (2) \(\Rightarrow4\le P\le6\)

Vậy GTNN là \(P=4\)đạt được khi \(\hept{\begin{cases}x=-6\\y=10\end{cases}}or\hept{\begin{cases}x=10\\y=-6\end{cases}}\)

GTLN là \(P=6\) đạt được khi \(x=y=3\)  

8 tháng 4 2021

Áp dụng bđt bunhiacopxki, ta có:

\(\left(x^2+\frac{1}{x^2}\right)\left(1+16\right)\ge\left(x+\frac{4}{x}\right)^2\) => \(x^2+\frac{1}{x^2}\ge\frac{\left(x+\frac{4}{x}\right)^2}{17}\)

=> \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{x+\frac{4}{x}}{\sqrt{17}}=\frac{x}{\sqrt{17}}+\frac{4}{x\sqrt{17}}\)

CMTT: \(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{y}{\sqrt{17}}+\frac{4}{\sqrt{17}y}\)

\(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{z}{\sqrt{17}}+\frac{4}{\sqrt{17}z}\)

=> A \(\ge\frac{x+y+z}{\sqrt{17}}+\frac{4}{\sqrt{17}}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{x+y+z}{\sqrt{17}}+\frac{36}{\sqrt{17}\left(x+y+z\right)}\)(bđt: 1/a + 1/b + 1/c > = 9/(a+b+c)

=> A \(\ge\frac{16\left(x+y+z\right)}{\sqrt{17}}+\frac{36}{\sqrt{17}\left(x+y+z\right)}-\frac{15\left(x+y+z\right)}{\sqrt{17}}\)

\(\ge2\sqrt{\frac{16\left(x+y+z\right)}{\sqrt{17}}\cdot\frac{36}{\sqrt{17}\left(x+y+z\right)}}-\frac{15\cdot\frac{3}{2}}{\sqrt{17}}\)(Bđt cosi + bđt: x + y + z < = 3/2)

\(\ge\frac{48}{\sqrt{17}}-\frac{45}{2\sqrt{17}}=\frac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra <=> x = y= z = 1/2

Vậy MinA = \(\frac{3\sqrt{17}}{2}\) <=> x = y = z = 1/2

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

27 tháng 5 2018

Từ đề bài \(\Rightarrow4x^2+4y^2+4xy-24x-24y+44=0\)

\(\Leftrightarrow\left(2x+y\right)^2-24x-12y+36+3y^2-12y+12-4=0\)

\(\Leftrightarrow\left(2x+y-6\right)^2+3\left(y-2\right)^2-4=0\)

\(\Leftrightarrow\left(2x+y-6\right)^2=4-3\left(y-2\right)^2\le4\forall x;y\)

\(\Leftrightarrow-2\le2x+y-6\le2\Rightarrow4\le2x+y\le8\)

Do đó \(4\le P\le8\)

22 tháng 7 2019

1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)

\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)

\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)

2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)

\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)